Citation: | Zhang Junbo, Huang Jing, Xu Rong, Liu Yongsheng, 2025. Mantle Heterogeneity Recorded by Mass⁃Independent Fractionation of Sulfur Isotopes and Dynamic Implications. Earth Science, 50(7): 2482-2497. doi: 10.3799/dqkx.2025.129 |
Sulfur is a volatile element that is prone to mass-dependent fractionation of sulfur isotopes (MDF-S) during shallow magmatic processes (e.g., fractional crystallization and magma degassing), which limits us to constrain the properties of major mantle chemical reservoirs. The mass-independent fractionation of sulfur isotopes (MIF-S) is a phenomenon in which the fractionation behavior of sulfur isotopes deviates from the mass dependent relationship. MIF-S is mainly produced through photochemical reactions of sulfur-containing molecules under high-energy ultraviolet radiation, and its fractionation mechanism is closely related to the atmospheric evolution on early Earth. It is worth noting that MIF-S signals are commonly preserved in Archean sedimentary rocks, but they disappeared after the Great Oxidation Event (GOE). MIF-S does not rely on mantle redox states and high-temperature processes (such as partial melting, fractional crystallization, magma degassing), and can effectively avoid MDF-S driven by shallow magma processes. And so, MIF-S is crucial for understanding the onset of plate tectonics, mantle redox states, and deep material cycling. On the basis of a brief introduction to the theories of MDF-S and MIF-S, this review summarizes the sulfur isotope composition of major mantle chemical reservoirs, and focuses on the important progress in mantle heterogeneity and onset of plate tectonics recorded by MIF-S in the past two decades.
Algeo, T. J., Luo, G. M., Song, H. Y., et al., 2015. Reconstruction of Secular Variation in Seawater Sulfate Concentrations. Biogeosciences, 12(7): 2131-2151. https://doi.org/10.5194/bg-12-2131-2015
|
Antonelli, M. A., Kim, S. T., Peters, M., et al., 2014. Early Inner Solar System Origin for Anomalous Sulfur Isotopes in Differentiated Protoplanets. Proceedings of the National Academy of Sciences of the United States of America, 111(50): 17749-17754. https://doi.org/10.1073/pnas.1418907111
|
Aulbach, S., Stagno, V., 2016. Evidence for a Reducing Archean Ambient Mantle and Its Effects on the Carbon Cycle. Geology, 44(9): 751-754. https://doi.org/10.1130/g38070.1
|
Bénard, A., Klimm, K., Woodland, A. B., et al., 2018. Oxidising Agents in Sub-Arc Mantle Melts Link Slab Devolatilisation and Arc Magmas. Nature Communications, 9(1): 3500. https://doi.org/10.1038/s41467-018-05804-2
|
Beaudry, P., Longpré, M. A., Economos, R., et al., 2018. Degassing-Induced Fractionation of Multiple Sulphur Isotopes Unveils Post-Archaean Recycled Oceanic Crust Signal in Hotspot Lava. Nature Communications, 9(1): 5093. https://doi.org/10.1038/s41467-018-07527-w
|
Bindeman, I. N., Zakharov, D. O., Palandri, J., et al., 2018. Rapid Emergence of Subaerial Landmasses and Onset of a Modern Hydrologic Cycle 2.5 Billion Years Ago. Nature, 557(7706): 545-548. https://doi.org/10.1038/s41586-018-0131-1
|
Brenan, J. M., Mungall, J. E., Bennett, N. R., 2019. Abundance of Highly Siderophile Elements in Lunar Basalts Controlled by Iron Sulfide Melt. Nature Geoscience, 12(9): 701-706. https://doi.org/10.1038/s41561-019-0426-3
|
Cabral, R. A., Jackson, M. G., Rose-Koga, E. F., et al., 2013. Anomalous Sulphur Isotopes in Plume Lavas Reveal Deep Mantle Storage of Archaean Crust. Nature, 496(7446): 490-493. https://doi.org/10.1038/nature12020
|
Caro, G., Grocolas, T., Bourgeois, P., et al., 2025. Early Archaean Onset of Volatile Cycling at Subduction Zones. Nature Geoscience, 18(5): 436-442. https://doi.org/10.1038/s41561-025-01677-5
|
Cartigny, P., Farquhar, J., Thomassot, E., et al., 2009. A Mantle Origin for Paleoarchean Peridotitic Diamonds from the Panda Kimberlite, Slave Craton: Evidence from 13C-, 15N- and 33, 34S-Stable Isotope Systematics. Lithos, 112: 852-864. https://doi.org/10.1016/j.lithos.2009.06.007
|
Cartigny, L. J., Devey, C. W., Jackson, M. G., et al., 2015. On the Archean vs. Proterozoic Age of the HIMU Mantle Component: New 33S/32S, 34S/32S, 36S/32S-Data from Saint-Helena Glasses. Goldschmidt Conference. MSA and EAG, Prague.
|
Chen, C. F., Förster, M. W., Shcheka, S. S., et al., 2025. Sulfide-Rich Continental Roots at Cratonic Margins Formed by Carbonated Melts. Nature, 637(8046): 615-621. https://doi.org/10.1038/s41586-024-08316-w
|
Chen, K., Tang, M., Lee, C. A., et al., 2020. Sulfide-bearing Cumulates in Deep Continental Arcs: The Missing Copper Reservoir. Earth and Planetary Science Letters, 531: 115971. https://doi.org/10.1016/j.epsl.2019.115971
|
Chen, L. H., Zeng, G., Jiang, S. Y., et al., 2009. Sources of Anfengshan Basalts: Subducted Lower Crust in the Sulu UHP Belt, China. Earth and Planetary Science Letters, 286(3-4): 426-435. https://doi.org/10.1016/j.epsl.2009.07.006
|
Chen, L. H., Zeng, G., Liu, J. Q., et al., 2022. The Nature of the Deep Mantle Chemical Reservoirs: Perspective from Continental Intraplate Volcanic Rocks. Acta Petrologica Sinica, 38(12): 3703-3711 (in Chinese with English abstract).
|
Claire, M. W., Kasting, J. F., Domagal-Goldman, S. D., et al., 2014. Modeling the Signature of Sulfur Mass- Independent Fractionation Produced in the Archean Atmosphere. Geochimica et Cosmochimica Acta, 141: 365-380. https://doi.org/10.1016/j.gca.2014.06.032
|
Cui, H., Zhong, R. C., Xie, Y. L., et al., 2020. Forming Sulfate- and REE-Rich Fluids in the Presence of Quartz. Geology, 48(2): 145-148. https://doi.org/10.1130/g46893.1
|
Delavault, H., Chauvel, C., Thomassot, E., et al., 2016. Sulfur and Lead Isotopic Evidence of Relic Archean Sediments in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences, 113(46): 12952-12956. https://doi.org/10.1073/pnas.1523805113
|
De Witt, H. L., Hasenkopf, C. A., Trainer, M. G., et al., 2010. The Formation of Sulfate and Elemental Sulfur Aerosols under Varying Laboratory Conditions: Implications for Early Earth. Astrobiology, 10(8): 773-781. https://doi.org/10.1089/ast.2009.9455
|
Dottin III, J. W., Labidi, J., Jackson, M. G., et al., 2020a. Isotopic Evidence for Multiple Recycled Sulfur Reservoirs in the Mangaia Mantle Plume. Geochemistry, Geophysics, Geosystems, 21(10): e2020GC009081. https://doi.org/10.1029/2020GC009081
|
Dottin III, J. W., Labidi, J., Lekic, V., et al., 2020b. Sulfur Isotope Characterization of Primordial and Recycled Sources Feeding the Samoan Mantle Plume. Earth and Planetary Science Letters, 534: 116073. https://doi.org/10.1016/j.epsl.2020.116073
|
Farquhar, J., Bao, H. M., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-758. https://doi.org/10.1126/science.289.5480.756
|
Farquhar, J., Wing, B. A., McKeegan, K. D., et al., 2002. Mass-Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth. Science, 298(5602): 2369-2372. https://doi.org/10.1126/science.1078617
|
Farsang, S., Zajacz, Z., 2025. Sulfur Species and Gold Transport in Arc Magmatic Fluids. Nature Geoscience, 18(1): 98-104. https://doi.org/10.1038/s41561-024-01601-3
|
Fitzpayne, A., Giuliani, A., Magalhães, N., et al., 2021. Sulfur Isotope Constraints on the Petrogenesis of the Kimberley Kimberlites. Geochemistry, Geophysics, Geosystems, 22(11): e2021GC009845. https://doi.org/10.1029/2021GC009845
|
Frei, R., Gaucher, C., Poulton, S. W., et al., 2009. Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes. Nature, 461(7261): 250-253. https://doi.org/10.1038/nature08266
|
Genot, I., Angiboust, S., Cartigny, P., 2024. Multiple Sulfur Isotopes Evidence Deep Intra-Slab Transport of Sulfate-Rich Fluids. Geochimica et Cosmochimica Acta, 377: 84-100. https://doi.org/10.1016/j.gca.2024.05.025
|
Giuliani, A., Drysdale, R. N., Woodhead, J. D., et al., 2022. Perturbation of the Deep-Earth Carbon Cycle in Response to the Cambrian Explosion. Science Advances, 8(9): eabj1325. https://doi.org/10.1126/sciadv.abj1325
|
Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971): 753-757. https://doi.org/10.1038/309753a0
|
Hattori, S., Schmidt, J. A., Johnson, M. S., et al., 2013. SO2 Photoexcitation Mechanism Links Mass-Independent Sulfur Isotopic Fractionation in Cryospheric Sulfate to Climate Impacting Volcanism. Proceedings of the National Academy of Sciences, 110(44): 17656-17661. https://doi.org/10.1073/pnas.1213153110
|
Heiny, E. A., Stolper, E. M., Eiler, J. M., 2025. Differentiated Planetesimals Record Differing Sources of Sulfur in Inner and Outer Solar System Materials. Proceedings of the National Academy of Sciences, 122(18): e2418198122. https://doi.org/10.1073/pnas.2418198122
|
Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
|
Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838
|
Hutchison, W., Babiel, R. J., Finch, A. A., et al., 2019. Sulphur Isotopes of Alkaline Magmas Unlock Long-Term Records of Crustal Recycling on Earth. Nature Communications, 10(1): 4208. https://doi.org/10.1038/s41467-019-12218-1
|
Jackson, M. G., Hart, S. R., Koppers, A. A. P., et al., 2007. The Return of Subducted Continental Crust in Samoan Lavas. Nature, 448(7154): 684-687. https://doi.org/10.1038/nature06048
|
Johnston, D. T., 2011. Multiple Sulfur Isotopes and the Evolution of Earth's Surface Sulfur Cycle. Earth-Science Reviews, 106(1-2): 161-183. https://doi.org/10.1016/j.earscirev.2011.02.003
|
Jugo, P. J., Wilke, M., Botcharnikov, R. E., 2010. Sulfur K-Edge XANES Analysis of Natural and Synthetic Basaltic Glasses: Implications for S Speciation and S Content as Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 74(20): 5926-5938. https://doi.org/10.1016/j.gca.2010.07.022
|
Kagoshima, T., Sano, Y., Takahata, N., et al., 2015. Sulphur Geodynamic Cycle. Scientific Reports, 5: 1-6. https://doi.org/10.1038/srep08330
|
Kleinsasser, J. M., Simon, A. C., Konecke, B. A., et al., 2022. Sulfide and Sulfate Saturation of Dacitic Melts as a Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 326: 1-16. https://doi.org/10.1016/j.gca.2022.03.032
|
Kubota, Y., Matsu'ura, F., Shimizu, K., et al., 2022. Sulfur in Archean Komatiite Implies Early Subduction of Oceanic Lithosphere. Earth and Planetary Science Letters, 598: 117826. https://doi.org/10.1016/j.epsl.2022.117826
|
Labidi, J., Cartigny, P., 2016. Negligible Sulfur Isotope Fractionation during Partial Melting: Evidence from Garrett Transform Fault Basalts, Implications for the Late Veneer and the Hadean Matte. Earth and Planetary Science Letters, 451: 196-207. https://doi.org/10.1016/j.epsl.2016.07.012
|
Labidi, J., Cartigny, P., Hamelin, C., et al., 2014. Sulfur Isotope Budget (32S, 33S, 34S and 36S) in Pacific-Antarctic Ridge Basalts: A Record of Mantle Source Heterogeneity and Hydrothermal Sulfide Assimilation. Geochimica et Cosmochimica Acta, 133: 47-67. https://doi.org/10.1016/j.gca.2014.02.023
|
Labidi, J., Cartigny, P., Jackson, M. G., 2015. Multiple Sulfur Isotope Composition of Oxidized Samoan Melts and the Implications of a Sulfur Isotope 'Mantle Array' in Chemical Geodynamics. Earth and Planetary Science Letters, 417: 28-39. https://doi.org/10.1016/j.epsl.2015.02.004
|
Labidi, J., Cartigny, P., Moreira, M., 2013. Non-Chondritic Sulphur Isotope Composition of the Terrestrial Mantle. Nature, 501(7466): 208-211. https://doi.org/10.1038/nature12490
|
Labidi, J., Dottin, J. W., Clog, M., et al., 2022. Near-Zero 33S and 36S Anomalies in Pitcairn Basalts Suggest Proterozoic Sediments in the EM-1 Mantle Plume. Earth and Planetary Science Letters, 584: 117422. https://doi.org/10.1016/j.epsl.2022.117422
|
Labidi, J., Farquhar, J., Alexander, C. M. O., et al., 2017. Mass Independent Sulfur Isotope Signatures in CMs: Implications for Sulfur Chemistry in the Early Solar System. Geochimica et Cosmochimica Acta, 196: 326-350. https://doi.org/10.1016/j.gca.2016.09.036
|
Labidi, J., Shahar, A., Le Losq, C., et al., 2016. Experimentally Determined Sulfur Isotope Fractionation between Metal and Silicate and Implications for Planetary Differentiation. Geochimica et Cosmochimica Acta, 175: 181-194. https://doi.org/10.1016/j.gca.2015.12.001
|
LaFlamme, C., Fiorentini, M. L., Lindsay, M. D., et al., 2018. Atmospheric Sulfur is Recycled to the Crystalline Continental Crust during Supercontinent Formation. Nature Communications, 9(1): 4380. https://doi.org/10.1038/s41467-018-06691-3
|
Lee, C. A., Erdman, M., Yang, W. B., et al., 2018. Sulfur Isotopic Compositions of Deep Arc Cumulates. Earth and Planetary Science Letters, 500: 76-85. https://doi.org/10.1016/j.epsl.2018.08.017
|
Lee, C. A., Tang, M., 2020. How to Make Porphyry Copper Deposits. Earth and Planetary Science Letters, 529: 115868. https://doi.org/10.1016/j.epsl.2019.115868
|
Lee, C. A., Yeung, L. Y., McKenzie, N. R., et al., 2016. Two-Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience, 9(6): 417-424. https://doi.org/10.1038/ngeo2707
|
Lewis, J. A., Hoffmann, J. E., Schwarzenbach, E. M., et al., 2023. Sulfur Isotope Evidence from Peridotite Enclaves in Southern West Greenland for Recycling of Surface Material into Eoarchean Depleted Mantle Domains. Chemical Geology, 633: 121568. https://doi.org/10.1016/j.chemgeo.2023.121568
|
Li, H. J., Zhang, L. F., Bao, X. J., et al., 2021. High Sulfur Solubility in Subducted Sediment Melt under Both Reduced and Oxidized Conditions: With Implications for S Recycling in Subduction Zone Settings. Geochimica et Cosmochimica Acta, 304: 305-326. https://doi.org/10.1016/j.gca.2021.04.001
|
Li, J. L., Gao, J., Huang, G. F., et al., 2022. Geochemical Behavior and Recycling of Sulfur in Subduction Zones. Acta Petrologica Sinica, 38(5): 1345-1359 (in Chinese with English abstract).
|
Li, J. L., Schwarzenbach, E. M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11(1): 514. https://doi.org/10.1038/s41467-019-14110-4
|
Liu, S. A., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169-178. https://doi.org/10.1016/j.epsl.2016.03.051
|
Liu, X. Y., Hao, J. L., Li, R. Y., et al., 2022. Sulfur Isotopic Fractionation of the Youngest Chang'e-5 Basalts: Constraints on the Magma Degassing and Geochemical Features of the Mantle Source. Geophysical Research Letters, 49(15): e2022GL099922. https://doi.org/10.1029/2022GL099922
|
Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements. The Astrophysical Journal, 591(2): 1220-1247. https://doi.org/10.1086/375492
|
Luo, G. M., Ono, S., Beukes, N. J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years Ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134
|
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307-315. https://doi.org/10.1038/nature13068
|
Mazza, S. E., Gazel, E., Bizimis, M., et al., 2019. Sampling the Volatile-Rich Transition Zone beneath Bermuda. Nature, 569(7756): 398-403. https://doi.org/10.1038/s41586-019-1183-6
|
Meng, X. Y., Simon, A. C., Kleinsasser, J. M., et al., 2022. Formation of Oxidized Sulfur-Rich Magmas in Neoarchaean Subduction Zones. Nature Geoscience, 15(12): 1064-1070. https://doi.org/10.1038/s41561-022-01071-5
|
Moreira, H., Storey, C., Bruand, E., et al., 2023. Sub-Arc Mantle Fugacity Shifted by Sediment Recycling across the Great Oxidation Event. Nature Geoscience, 16(10): 922-927. https://doi.org/10.1038/s41561-023-01258-4
|
Moynier, F., Jackson, M. G., Zhang, K., et al., 2021. The Mercury Isotopic Composition of Earth's Mantle and the Use of Mass Independently Fractionated Hg to Test for Recycled Crust. Geophysical Research Letters, 48(17): e2021GL094301. https://doi.org/10.1029/2021GL094301
|
Muth, M. J., Wallace, P. J., 2021. Slab-Derived Sulfate Generates Oxidized Basaltic Magmas in the Southern Cascade Arc (California, USA). Geology, 49(10): 1177-1181. https://doi.org/10.1130/g48759.1
|
Nebel, O., Arculus, R. J., van Westrenen, W., et al., 2013. Coupled Hf-Nd-Pb Isotope Co-Variations of HIMU Oceanic Island Basalts from Mangaia, Cook-Austral Islands, Suggest an Archean Source Component in the Mantle Transition Zone. Geochimica et Cosmochimica Acta, 112: 87-101. https://doi.org/10.1016/j.gca.2013.03.005
|
Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
|
Ono, S., 2017. Photochemistry of Sulfur Dioxide and the Origin of Mass-Independent Isotope Fractionation in Earth's Atmosphere. Annual Review of Earth and Planetary Sciences, 45(1): 301-329. https://doi.org/10.1146/annurev-earth-060115-012324
|
Pavlov, A. A., Kasting, J. F., 2002. Mass-Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere. Astrobiology, 2(1): 27-41. https://doi.org/10.1089/153110702753621321
|
Pons, M. L., Debret, B., Bouilhol, P., et al., 2016. Zinc Isotope Evidence for Sulfate-Rich Fluid Transfer across Subduction Zones. Nature Communications, 7: 13794. https://doi.org/10.1038/ncomms13794
|
Poulton, S. W., Bekker, A., Cumming, V. M., et al., 2021. A 200-Million-Year Delay in Permanent Atmospheric Oxygenation. Nature, 592(7853): 232-236. https://doi.org/10.1038/s41586-021-03393-7
|
Ranta, E., Gunnarsson-Robin, J., Halldórsson, S. A., et al., 2022. Ancient and Recycled Sulfur Sampled by the Iceland Mantle Plume. Earth and Planetary Science Letters, 584: 117452. https://doi.org/10.1016/j.epsl.2022.117452
|
Reekie, C. D. J., Jenner, F. E., Smythe, D. J., et al., 2019. Sulfide Resorption during Crustal Ascent and Degassing of Oceanic Plateau Basalts. Nature Communications, 10(1): 82. https://doi.org/10.1038/s41467-018-08001-3
|
Saal, A. E., Hauri, E. H., 2021. Large Sulfur Isotope Fractionation in Lunar Volcanic Glasses Reveals the Magmatic Differentiation and Degassing of the Moon. Science Advances, 7(9): eabe4641. https://doi.org/10.1126/sciadv.abe4641
|
Shirey, S. B., Richardson, S. H., 2011. Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle. Science, 333(6041): 434-436. https://doi.org/10.1126/science.1206275
|
Smit, K. V., Shirey, S. B., Hauri, E. H., et al., 2019. Sulfur Isotopes in Diamonds Reveal Differences in Continent Construction. Science, 364(6438): 383-385. https://doi.org/10.1126/science.aaw9548
|
Sobolev, A. V., Asafov, E. V., Gurenko, A. A., et al., 2019. Deep Hydrous Mantle Reservoir Provides Evidence for Crustal Recycling before 3.3 Billion Years Ago. Nature, 571(7766): 555-559. https://doi.org/10.1038/s41586-019-1399-5
|
Sobolev, A. V., Hofmann, A. W., Nikogosian, I. K., 2000. Recycled Oceanic Crust Observed in 'Ghost Plagioclase' within the Source of Mauna Loa Lavas. Nature, 404(6781): 986-990. https://doi.org/10.1038/35010098
|
Spencer, C. J., Partin, C. A., Kirkland, C. L., et al., 2019. Paleoproterozoic Increase in Zircon δ18O Driven by Rapid Emergence of Continental Crust. Geochimica et Cosmochimica Acta, 257: 16-25. https://doi.org/10.1016/j.gca.2019.04.016
|
Stolper, D. A., Keller, C. B., 2018. A Record of Deep-Ocean Dissolved O2 from the Oxidation State of Iron in Submarine Basalts. Nature, 553(7688): 323-327. https://doi.org/10.1038/nature25009
|
Stracke, A., 2012. Earth's Heterogeneous Mantle: A Product of Convection-Driven Interaction between Crust and Mantle. Chemical Geology, 330-331: 274-299. https://doi.org/10.1016/j.chemgeo.2012.08.007
|
Tang, M., Chen, K., Rudnick, R. L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science, 351(6271): 372-375. https://doi.org/10.1126/science.aad5513
|
Tang, M., Lee, C. A., Ji, W. Q., et al., 2020. Crustal Thickening and Endogenic Oxidation of Magmatic Sulfur. Science Advances, 6(31): eaba6342. https://doi.org/10.1126/sciadv.aba6342
|
Tappe, S., Steenfelt, A., Nielsen, T., 2012. Asthenospheric Source of Neoproterozoic and Mesozoic Kimberlites from the North Atlantic Craton, West Greenland: New High-Precision U-Pb and Sr-Nd Isotope Data on Perovskite. Chemical Geology, 320-321: 113-127. https://doi.org/10.1016/j.chemgeo.2012.05.026
|
Taracsák, Z., Hartley, M. E., Burgess, R., et al., 2025. The Origin of Sulfur in Canary Island Magmas and Its Implications for Earth's Deep Sulfur Cycle. Proceedings of the National Academy of Sciences, 122(12): e2416070122. https://doi.org/10.1073/pnas.2416070122
|
Thomassot, E., Cartigny, P., Harris, J. W., et al., 2009. Metasomatic Diamond Growth: A Multi-Isotope Study (13C, 15N, 33S, 34S) of Sulphide Inclusions and Their Host Diamonds from Jwaneng (Botswana). Earth and Planetary Science Letters, 282(1-4): 79-90. https://doi.org/10.1016/j.epsl.2009.03.001
|
Timmerman, S., Honda, M., Burnham, A. D., et al., 2019. Primordial and Recycled Helium Isotope Signatures in the Mantle Transition Zone. Science, 365(6454): 692-694. https://doi.org/10.1126/science.aax5293
|
Torsvik, T. H., Burke, K., Steinberger, B., et al., 2010. Diamonds Sampled by Plumes from the Core-Mantle Boundary. Nature, 466(7304): 352-355. https://doi.org/10.1038/nature09216
|
Walter, M. J., Kohn, S. C., Araujo, D., et al., 2011. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 334(6052): 54-57. https://doi.org/10.1126/science.1209300
|
Walters, J. B., Cruz-Uribe, A. M., Marschall, H. R., 2019. Isotopic Compositions of Sulfides in Exhumed High-Pressure Terranes: Implications for Sulfur Cycling in Subduction Zones. Geochemistry, Geophysics, Geosystems, 20(7): 3347-3374. https://doi.org/10.1029/2019GC008374
|
Wan, Y., Chou, I. M., Wang, X. L., et al., 2023. Hydrothermal Sulfate Surges Promote Rare Earth Element Transport and Mineralization. Geology, 51(5): 449-453. https://doi.org/10.1130/g50848.1
|
Wan, Y., Wang, X. L., Chou, I. M., et al., 2021. Role of Sulfate in the Transport and Enrichment of REE in Hydrothermal Systems. Earth and Planetary Science Letters, 569: 117068. https://doi.org/10.1016/j.epsl.2021.117068
|
Wang, S. J., Rudnick, R. L., Gaschnig, R. M., et al., 2019. Methanogenesis Sustained by Sulfide Weathering during the Great Oxidation Event. Nature Geoscience, 12(4): 296-300. https://doi.org/10.1038/s41561-019-0320-z
|
Wang, W. Z., Li, C. H., Brodholt, J. P., et al., 2021. Sulfur Isotopic Signature of Earth Established by Planetesimal Volatile Evaporation. Nature Geoscience, 14(11): 806-811. https://doi.org/10.1038/s41561-021-00838-6
|
Wang, X. J., Chen, L. H., Hofmann, A. W., et al., 2018. Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences, 115(35): 8682-8687. https://doi.org/10.1073/pnas.1719570115
|
Wang, Z. C., Becker, H., 2013. Ratios of S, Se and Te in the Silicate Earth Require a Volatile-Rich Late Veneer. Nature, 499(7458): 328-331. https://doi.org/10.1038/nature12285
|
Weiss, Y., Class, C., Goldstein, S. L., et al., 2016. Key New Pieces of the HIMU Puzzle from Olivines and Diamond Inclusions. Nature, 537(7622): 666-670. https://doi.org/10.1038/nature19113
|
Wood, B. J., Halliday, A. N., 2010. The Lead Isotopic Age of the Earth can be Explained by Core Formation Alone. Nature, 465(7299): 767-770. https://doi.org/10.1038/nature09072
|
Woodhead, J., Hergt, J., Giuliani, A., et al., 2019. Kimberlites Reveal 2.5-Billion-Year Evolution of a Deep, Isolated Mantle Reservoir. Nature, 573(7775): 578-581. https://doi.org/10.1038/s41586-019-1574-8
|
Xu, R., Cai, Y., Lambart, S., et al., 2025. Heavy Boron Isotopes in Intraplate Basalts Reveal Recycled Carbonate in the Mantle. Science Advances, 11(17): eads5104. https://doi.org/10.1126/sciadv.ads5104
|
Xu, R., Liu, Y. S., Lambart, S., et al., 2022. Decoupled Zn-Sr-Nd Isotopic Composition of Continental Intraplate Basalts Caused by Two-Stage Melting Process. Geochimica et Cosmochimica Acta, 326: 234-252. https://doi.org/10.1016/j.gca.2022.03.014
|
Xu, Z., Li, Y., 2021. The Sulfur Concentration at Anhydrite Saturation in Silicate Melts: Implications for Sulfur Cycle and Oxidation State in Subduction Zones. Geochimica et Cosmochimica Acta, 306: 98-123. https://doi.org/10.1016/j.gca.2021.05.027
|
Yang, J. F., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91. https://doi.org/10.1038/s41586-020-2045-y
|
Zhang, J. B., Liu, Y. S., Ducea, M. N., et al., 2020. Archean, Highly Unradiogenic Lead in Shallow Cratonic Mantle. Geology, 48(6): 584-588. https://doi.org/10.1130/g47064.1
|
Zhang, J. B., Liu, Y. S., Foley, S. F., et al., 2024. Widespread Two-Layered Melt Structure in the Asthenosphere. Nature Geoscience, 17(5): 472-477. https://doi.org/10.1038/s41561-024-01433-1
|
Zhang, J. B., Liu, Y. S., Ling, W. L., et al., 2017. Pressure-Dependent Compatibility of Iron in Garnet: Insights into the Origin of Ferropicritic Melt. Geochimica et Cosmochimica Acta, 197: 356-377. https://doi.org/10.1016/j.gca.2016.10.047
|
Zhang, X. Y., Chen, L. H., Wang, X. J., et al., 2022. Zinc Isotopic Evidence for Recycled Carbonate in the Deep Mantle. Nature Communications, 13(1): 6085. https://doi.org/10.1038/s41467-022-33789-6
|
Zhou, Z. B., Chen, L. H., Huang, Z. C., et al., 2025. The Return of Stagnant Slab Recorded by Intraplate Volcanism. Proceedings of the National Academy of Sciences, 122(1): e2414632122. https://doi.org/10.1073/pnas.2414632122
|
Zindler, A., Hart, S. R., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
|
陈立辉, 曾罡, 刘建强, 等, 2022. 从大陆火山岩视角了解深部地幔化学储库的属性. 岩石学报, 38(12): 3703-3711.
|
李继磊, 高俊, 黄高风, 等, 2022. 俯冲带硫的地球化学行为及硫循环. 岩石学报, 38(5): 1345-1359.
|