| Citation: | Peng Ming, Zhang Jingliang, Zhu Yan, Li Shuang, Chen Fangjian, 2025. Failure Mode of Dike and Reinforcement Mechanism of Steel Sheet Pile during Storm Surge. Earth Science, 50(10): 3809-3822. doi: 10.3799/dqkx.2025.137 | 
To investigate the dike stability during the storm surge, this study analyzed the failure modes of the dike under varying water levels and wave heights and the reinforcement mechanisms of the steel sheet piles on the dike based on the flume tests. The experimental results indicate that unreinforced dike failed at low water levels and high wave heights, following a failure process: seepage and overtopping, landward slope sliding, vertical wall tilting, and dike crest scouring. The single-row steel sheet pile kept the dike basically stable by reducing the internal seepage under low water level and high wave height conditions. At high water levels and middle wave heights, the dike eventually failed with a similar failure mode compared to the unreinforced dike. However, the single-row steel sheet pile blocked the headward scour caused by overtopping waves, mitigating the wave scour on the dike crest and generating obvious deformation with a significant increase in the maximum bending moment. The double-row steel sheet piles further reduced seepage and wave scour at high water levels and middle wave heights, and the dike remained stable basically with only several fence panels slipping. At high water levels and wave heights, the seaward pile and landward pile blocked the wave scour on the dike crest caused by waves in front of the dike and wave overtopping behind the dike, respectively, maintaining the dike and vertical wall stability. The maximum bending moments of the double-row steel sheet piles were smaller with deeper locations due to the limitation of the tie rod on the deformation. This research indicated that the single-row steel sheet pile improved the dike stability by reducing seepage and blocking the headward scour caused by wave overtopping. The double-row steel sheet piles reduced seepage and headward scour more effectively and blocked the wave scour in front of the dike, making the dike crest remain stable under the most extreme conditions.
	                | 
					 Aerts, J. C. J. H., 2018. A Review of Cost Estimates for Flood Adaptation. Water, 10(11): 1646.  https://doi.org/10.3390/w10111646 
						
					 | 
			
| 
					 Perks, A. R., 2007. The New Orleans Hurricane Protection System: What Went Wrong and Why. Canadian Consulting Engineer, 48(6): 10-12. 
						
					 | 
			
| 
					 Brandon, T. L., Wright, S. G., Duncan, J. M., 2008. Analysis of the Stability of I-Walls with Gaps between the I-Wall and the Levee Fill. Journal of Geotechnical and Geoenvironmental Engineering, 134(5): 692-700.  https://doi.org/10.1061/(asce)1090-0241(2008)134:5(692) 
						
					 | 
			
| 
					 Chen, L. Y., Zhai, H. L., Wang, P. D., et al., 2020. Physical Modeling of Combined Waves and Current Propagating around a Partially Embedded Monopile in a Porous Seabed. Ocean Engineering, 205: 107307.  https://doi.org/10.1016/j.oceaneng.2020.107307 
						
					 | 
			
| 
					 Chen, P. B., 2015. Experiment Study of Wave Action on Gabion Blocks (Dissertation). Dalian University of Technology, Dalian (in Chinese with English abstract). 
						
					 | 
			
| 
					 Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent and Warn the Catastrophe Risk? Earth Science, 47(10): 3897-3899(in Chinese with English abstract). 
						
					 | 
			
| 
					 Danka, J., Zhang, L. M., 2015. Dike Failure Mechanisms and Breaching Parameters. Journal of Geotechnical and Geoenvironmental Engineering, 141(9): 04015039.  https://doi.org/10.1061/(asce)gt.1943-5606.0001335 
						
					 | 
			
| 
					 Esteban, M., Takagi, H., Nicholls, R. J., et al., 2020. Adapting Ports to Sea-Level Rise: Empirical Lessons Based on Land Subsidence in Indonesia and Japan. Maritime Policy & Management, 47(7): 937-952.  https://doi.org/10.1080/03088839.2019.1634845 
						
					 | 
			
| 
					 Fu, X., Liang, S. D., Guo, H. L., et al., 2023. Characteristic Analysis of Tropical Storm Surges Affecting the Coastal Area of China in the Past 40 Years. Marine Forecasts, 40(6): 1-11(in Chinese with English abstract). 
						
					 | 
			
| 
					 Genovese, E., Green, C., 2015. Assessment of Storm Surge Damage to Coastal Settlements in Southeast Florida. Journal of Risk Research, 18(4): 407-427.  https://doi.org/10.1080/13669877.2014.896400 
						
					 | 
			
| 
					 Hu, J. M., Wu, W., Tian, Y. X. Y., et al., 2022. A Comparative Study on Marine Disaster Prevention and Mitigation Systems between China and Japan. Marine Science Bulletin, 41(3): 349-360(in Chinese with English abstract). 
						
					 | 
			
| 
					 Ko, K. W., Park, H. J., Ha, J. G., et al., 2019. Evaluation of Dynamic Bending Moment of Disconnected Piled Raft via Centrifuge Tests. Canadian Geotechnical Journal, 56(12): 1917-1928.  https://doi.org/10.1139/cgj-2018-0248 
						
					 | 
			
| 
					 Le, T. A., Takagi, H., Heidarzadeh, M., et al., 2019. Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-Enclosed Osaka Bay, Japan. Pure and Applied Geophysics, 176(10): 4139-4160.  https://doi.org/10.1007/s00024-019-02295-0 
						
					 | 
			
| 
					 Lengkeek, H. J., 2022. Testing and Modeling of Sheet Pile Reinforced Dikes on Organic Soils Insights from the Eemdijk Full-Scale Failure Test (Dissertation). Delft University of Technology, Delft. 
						
					 | 
			
| 
					 Li, H. W., Xu, Z. G., Shi, J. Y., et al., 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413(in Chinese with English abstract). 
						
					 | 
			
| 
					 Mikami, T., Shibayama, T., Takagi, H., et al., 2016. Storm Surge Heights and Damage Caused by the 2013 Typhoon Haiyan along the Leyte Gulf Coast. Coastal Engineering Journal, 58(1): 1640005-1-1640005-27.  https://doi.org/10.1142/S0578563416400052 
						
					 | 
			
| 
					 Mitobe, Y., Adityawan, M. B., Roh, M., et al., 2016. Experimental Study on Embankment Reinforcement by Steel Sheet Pile Structure against Tsunami Overflow. Coastal Engineering Journal, 58(4): 1640018-1-1640018-18.  https://doi.org/10.1142/S0578563416400180 
						
					 | 
			
| 
					 Moriyasu, S., Oikawa, S., Taenaka, S., et al., 2016. Development of New Type of Breakwater Reinforced with Steel Piles against a Huge Tsunami. Nippon Steel Technical Report, 113: 64-70. 
						
					 | 
			
| 
					 Ou, X. D., Chen, G. Y., Tan, Z. J., et al., 2022. Stress and Deformation Analysis of Steel Sheet Pile Cofferdam under Tidal Action. Journal of Guangxi University (Natural Science Edition), 47(5): 1125-1134(in Chinese with English abstract). 
						
					 | 
			
| 
					 Peng, M., Zhang, J. L., Zhu, Y., et al., 2024. Experimental Study on Wave Attenuation and Stability of Ecological Dike System Composed of Submerged Breakwater, Mangrove, and Dike under Storm Surge. Applied Ocean Research, 151: 104144.  https://doi.org/10.1016/j.apor.2024.104144 
						
					 | 
			
| 
					 Robertson, I. N., Paczkowski, K., Riggs, H. R., et al., 2013. Experimental Investigation of Tsunami Bore Forces on Vertical Walls. Journal of Offshore Mechanics and Arctic Engineering, 135(2): 021601.  https://doi.org/10.1115/1.4023149 
						
					 | 
			
| 
					 Saha, P., Horikoshi, K., Takahashi, A., 2020. Performance of Sheet Pile to Mitigate Liquefaction-Induced Lateral Spreading of Loose Soil Layer under the Embankment. Soil Dynamics and Earthquake Engineering, 139: 106410.  https://doi.org/10.1016/j.soildyn.2020.106410 
						
					 | 
			
| 
					 van Loon-Steensma, J. M., Schelfhout, H. A., Vellinga, P., 2014. Green Adaptation by Innovative Dike Concepts along the Dutch Wadden Sea Coast. Environmental Science & Policy, 44: 108-125.  https://doi.org/10.1016/j.envsci.2014.06.009 
						
					 | 
			
| 
					 Wang, F. P., Shao, Y. Y., Lyu, B., et al., 2016. Experimental Study of the Wave Pressure on Seawall with Hinged Concrete Slab Mattress Revetment. Port & Waterway Engineering, (11): 18-24(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wang, X. W., 2017. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed (Dissertation). Tsinghua University, Beijing(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wang, Y. Q., Xu, D., He, Z. G., et al., 2020. Experimental Study on Sand Dike Breaching by Wave Overtopping. Applied Ocean Research, 101: 102195.  https://doi.org/10.1016/j.apor.2020.102195 
						
					 | 
			
| 
					 Wei, S., Deng, C. L., Liang, R. Z., et al., 2020. Model Testing on Deformation Characteristics of the Locking Steel Pipe Pile Retaining Structure by Using 3D Printing. Chinese Journal of Rock Mechanics and Engineering, 39(S2): 3676-3686(in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhang, Y., Ye, J. H., 2021. Physical Modelling of the Stability of a Revetment Breakwater Built on Reclaimed Coral Calcareous Sand Foundation in the South China Sea-Random Waves and Dense Foundation. Ocean Engineering, 219: 108384.  https://doi.org/10.1016/j.oceaneng.2020.108384 
						
					 | 
			
| 
					 Zhu, Y., 2022. Study on Static and Dynamic Characteristics and Stability of Double Steel Sheet Pile Cofferdam in Coastal Zone (Dissertation). Tongji University, Shanghai(in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhu, Y., Lin, J., Peng, M., 2022. Experimental Study on Influence of Standing Waves and near Breaking Waves on a Double Steel Sheet Pile Cofferdam. Advances in Science and Technology of Water Resources, 42(1): 85-90, 102(in Chinese with English abstract). 
						
					 | 
			
| 
					 陈培波, 2015. 波浪对石笼护面块体作用的试验研究(硕士学位论文). 大连: 大连理工大学. 
					
					 | 
			
| 
					 崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险?. 地球科学, 47(10): 3897-3899. doi:  10.3799/dqkx.2022.855  
					
					 | 
			
| 
					 付翔, 梁森栋, 郭洪琳, 等, 2023. 中国沿海40年台风风暴潮特征研究. 海洋预报, 40(6): 1-11. 
					
					 | 
			
| 
					 胡金铭, 武文, 田野小雨, 等, 2022. 中日海洋防灾减灾体系对比研究. 海洋通报, 41(3): 349-360. 
					
					 | 
			
| 
					 李宏伟, 徐志国, 史健宇, 等, 2024. 基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁. 地球科学, 49(2): 403-413. doi:  10.3799/dqkx.2023.168  
					
					 | 
			
| 
					 欧孝夺, 陈广源, 谭智杰, 等, 2022. 潮汐作用下钢板桩围堰受力变形分析. 广西大学学报(自然科学版), 47(5): 1125-1134. 
					
					 | 
			
| 
					 王飞朋, 邵宇阳, 吕博, 等, 2016. 混凝土铰链排护坡式海堤波压力试验研究. 水运工程, (11): 18-24. 
					
					 | 
			
| 
					 王小雯, 2017. 波浪作用下饱和砂质海床液化机理研究(博士学位论文). 北京: 清华大学. 
					
					 | 
			
| 
					 韦实, 邓成龙, 梁荣柱, 等, 2020. 基于3D打印的锁口钢管桩围护结构变形特性试验研究. 岩石力学与工程学报, 39(增刊2): 3676-3686. 
					
					 | 
			
| 
					 朱艳, 2022. 海岸带双排钢板桩围堰静动力学特性及稳定性研究(博士学位论文). 上海: 同济大学. 
					
					 | 
			
| 
					 朱艳, 林靖, 彭铭, 2022. 立波和近破波对双排钢板桩围堰作用的试验研究. 水利水电科技进展, 42(1): 85-90, 102. 
					
					 |