• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 10
    Oct.  2025
    Turn off MathJax
    Article Contents
    Peng Ming, Ji Sitong, Sun Rui, Zhu Yan, Yang Ge, Cao Zijun, Bai Zewen, 2025. Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams. Earth Science, 50(10): 3776-3794. doi: 10.3799/dqkx.2025.160
    Citation: Peng Ming, Ji Sitong, Sun Rui, Zhu Yan, Yang Ge, Cao Zijun, Bai Zewen, 2025. Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams. Earth Science, 50(10): 3776-3794. doi: 10.3799/dqkx.2025.160

    Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams

    doi: 10.3799/dqkx.2025.160
    • Received Date: 2025-06-28
    • Publish Date: 2025-10-25
    • Cascading failures of cascade dams significantly amplify downstream life risk due to the flood magnification effect, highlighting the urgent need for a systematic framework for risk assessment and early warning decision-making. This study proposes an integrated analytical framework that couples flood evolution simulation, life loss estimation, and early warning optimization. A two-dimensional hydrodynamic model is employed to simulate cascading dam-break scenarios based on breach parameters of different dam types and high-resolution terrain data. The HURAM model is used to quantify life loss rates across varying risk zones. Furthermore, a response relationship between early warning lead time and total evacuation loss is established to identify the optimal warning strategy. Using the Qingjiang River Basin as a case study, a hypothetical scenario involving three sequential dam failures triggered by a 1-in-1 000-year flood is simulated. The results demonstrate that the proposed framework enables comprehensive life loss risk assessment and informed early warning decisions under cascading failure conditions. Compared to single dam failure, cascading breaches increase peak flood discharges by 8.29% at Geheyan and 47.05% at Gaobazhou. However, due to the influence of upstream dam structures and U-shaped valley topography, local flood attenuation occurs despite upstream water level rise. The two-dimensional model captures terrain and velocity distribution more accurately, resulting in an approximately 5.3% increase in estimated life loss risk relative to the one-dimensional model. To minimize evacuation loss, the optimal early warning time is determined as 3.4 hours before Gaobazhou dam failure, reducing total economic loss to approximately 870 million CNY. The results highlight that the flood amplification effect is constrained by both terrain and dam structure, while life loss is highly sensitive to non-linear interactions with hazard parameters such as water depth. This study provides a practical approach and theoretical foundation for cascading dam failure risk management.

       

    • loading
    • Brazdova, M., Riha, J., 2014. A Simple Model for the Estimation of the Number of Fatalities Due to Floods in Central Europe. Natural Hazards and Earth System Sciences, 14(7): 1663-1676. https://doi.org/10.5194/nhess-14-1663-2014
      Chen, H. Y., Xu, W. L., Deng, J., et al., 2014. Experimental Investigation of Pressure Load Exerted on a Downstream Dam by Dam-Break Flow. Journal of Hydraulic Engineering, 140(2): 199-207. https://doi.org/10.1061/(asce)hy.1943-7900.0000743
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent and Warn the Catastrophe Risk? Earth Science, 47(10): 3897-3899(in Chinese with English abstract).
      Dai, S. B., He, Y., Yang, J. J., et al., 2020. Numerical Study of Cascading Dam-Break Characteristics Using SWEs and RANS. Water Supply, 20(1): 348-360. https://doi.org/10.2166/ws.2019.168
      Souza, L. D. C. S. R., de Oliveira, A. N., de Almeida, A. Q., et al., 2023. Dam Safety in Sergipe: Jacarecica Ⅰ and Jacarecica Ⅱ Hypothetical Cascade Dam-Break Simulation. RBRH, 28: e32. https://doi.org/10.1590/2318-0331.282320230041
      Ge, W., Wang, X. W., Li, Z. K., et al., 2021. Interval Analysis of the Loss of Life Caused by Dam Failure. Journal of Water Resources Planning and Management, 147: 04020098. https://doi.org/10.1061/(asce)wr.1943-5452.0001311
      Guo, X. L., Zhou, X. B., Xia, Q. F., et al., 2017. Safety Analysis of Flood Discharge Structures of the Control Cascade Reservoir under Extreme Operating Condition. Journal of Hydraulic Engineering, 48(10): 1157-1166(in Chinese with English abstract).
      Hu, L. M., Zhang, Z. F., Li, Q., et al., 2018. Sequential Dam Break Simulation and Risk Analysis of Earth-Rock Dams of Cascade Reservoirs. Journal of Hydroelectric Engineering, 37(7): 65-73(in Chinese with English abstract).
      Jonkman, S. N., Penning-Rowsell, E., 2008. Human Instability in Flood Flows. JAWRA Journal of the American Water Resources Association, 44(5): 1208-1218. https://doi.org/10.1111/j.1752-1688.2008.00217.x
      Li, L., Wang, R. Z., Sheng, J. B., et al., 2006. Dam Risk Assessment and Risk Management. China Water & Power Press, Beijing (in Chinese).
      Liu, J. H., Zhou, J. J., Wang, H., 2023. Review on Catastrophe Risk Analysis and Mitigation of Cascade Hydropower Complexes. Journal of Hydraulic Engineering, 54(1): 34-44(in Chinese with English abstract).
      Ma, L., Tian, Y., Chen, L. C., et al., 2024. Dam-Break Flood Risk for Cascade Reservoirs: A Case Study of the Upper Lancangjiang River. Henan Science, 42(2): 157-164(in Chinese with English abstract).
      Mehta, A. M., Weeks, C. S., Tyquin, E., 2020. Towards Preparedness for Dam Failure: An Evidence Base for Risk Communication for Downstream Communities. International Journal of Disaster Risk Reduction, 50: 101820. https://doi.org/10.1016/j.ijdrr.2020.101820
      Meng, Y., Tang, L. L., 2022. Risk Assessment and Rating of Dam-Break Flood in Consideration of Disaster Consequences. Journal of Yangtze River Scientific Research Institute, 39(10): 61-65, 96(in Chinese with English abstract).
      Niu, Z. P., Xu, W. L., Li, N. W., et al., 2012. Experimental Investigation of the Failure of Cascade Landslide Dams. Journal of Hydrodynamics, Ser. B, 24(3): 430-441. https://doi.org/10.1016/S1001-6058(11)60264-3
      Peng, M., Zhang, L. M., 2012a. Analysis of Human Risks Due to Dam-Break Floods: Part 1: A New Model Based on Bayesian Networks. Natural Hazards, 64(1): 903-933. https://doi.org/10.1007/s11069-012-0275-5
      Peng, M., Zhang, L. M., 2012b. Analysis of Human Risks Due to Dam Break Floods—Part 2: Application to Tangjiashan Landslide Dam Failure. Natural Hazards, 64(2): 1899-1923. https://doi.org/10.1007/s11069-012-0336-9
      Peng, M., Zhang, L. M., 2013a. Dynamic Decision Making for Dam-Break Emergency Management—Part 1: Theoretical Framework. Natural Hazards and Earth System Sciences, 13(2): 425-437. https://doi.org/10.5194/nhess-13-425-2013
      Peng, M., Zhang, L. M., 2013b. Dynamic Decision Making for Dam-Break Emergency Management—Part 2: Application to Tangjiashan Landslide Dam Failure. Natural Hazards and Earth System Sciences, 13(2): 439-454. https://doi.org/10.5194/nhess-13-439-2013
      Syafri, R. R., Hadi, M. P., Suprayogi, S., 2020. Hydrodynamic Modelling of Juwana River Flooding Using HEC-RAS 2D. IOP Conference Series: Earth and Environmental Science, 412(1): 012028. https://doi.org/10.1088/1755-1315/412/1/012028
      Takayama, S., Fujimoto, M., Satofuka, Y., 2021. Amplification of Flood Discharge Caused by the Cascading Failure of Landslide Dams. International Journal of Sediment Research, 36(3): 430-438. https://doi.org/10.1016/j.ijsrc.2020.10.007
      Wang, J. Z., Sun, W. G., Li, X. J., et al., 2025. Numerical Simulation of the Successive Breach Process of the Core Wall Dam in Cascade Reservoirs. China Rural Water and Hydropower, (4): 7-13(in Chinese with English abstract).
      Wang, T., Li, Z. K., Ge, W., et al., 2022. Calculation of Dam Risk Probability of Cascade Reservoirs Considering Risk Transmission and Superposition. Journal of Hydrology, 609: 127768. https://doi.org/10.1016/j.jhydrol.2022.127768
      Wang, T., Li, Z. K., Ge, W., et al., 2023. Risk Consequence Assessment of Dam Breach in Cascade Reservoirs Considering Risk Transmission and Superposition. Energy, 265: 126315. https://doi.org/10.1016/j.energy.2022.126315
      Wang, X., Zheng, X. W., Chen, Z. G., 2009. Emergency Analysis of Dam Break of a Cascade Reservoir. Water Resources Planning and Design, (1): 52-53, 70(in Chinese with English abstract).
      Wu, W., 2016. Introduction to DLBreach: A Simplified Physically-Based Dam/Levee Breach Model. Clarkson University, NY.
      Xu, W. L., Chen, H. Y., Xue, Y., et al., 2013. Chain of Dam Break in Cascade Reservoirs. China Water & Power Press, Beijing (in Chinese with English abstract).
      Xu, Y., Zhang, L. M., 2009. Breaching Parameters for Earth and Rockfill Dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12): 1957-1970. https://doi.org/10.1061/(asce)gt.1943-5606.0000162
      Yang, Y. L., Shen, H. Y., Huang, W., 2022. Discussion on Failure Modes of Concrete Dams and Geometric Parameters of Dam Break. Dam & Safety, (3): 1-9(in Chinese with English abstract).
      Yang, Z. W., Wu, B. B., Liu, W. M., et al., 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736(in Chinese with English abstract).
      Yu, Z. B., Xiang, Y., Meng, Y., et al., 2021. Risk Analysis of Sequential Dam Break of Cascade Reservoirs and Simulation of Flood Routing. Pearl River, 42(8): 11-16 (in Chinese with English abstract).
      Zheng, H. C., Shi, Z. M., Peng, M., et al., 2022. Amplification Effect of Cascading Breach Discharge of Landslide Dams. Landslides, 19(3): 573-587. https://doi.org/10.1007/s10346-021-01816-0
      Zhou, H. F., Nie, D. X., Wang, C. S., 2015. Correlation between Wave Velocity and Deformation Modulus of Basalt Masses as Dam Foundation in Hydropower Projects. Earth Science, 40(11): 1904-1912(in Chinese with English abstract).
      Zhou, X. B., Chen, Z. Y., Huang, Y. F., et al., 2015. Evaluations on the Safety Design Standards for Dams with Extra Height or Cascade Impacts. Part Ⅲ: Risk Analysis of Embankment Break in Cascade. Journal of Hydraulic Engineering, 46(7): 765-772(in Chinese with English abstract).
      Zhou, Y. L., Guo, S. L., Chang, F. J., et al., 2018. Methodology That Improves Water Utilization and Hydropower Generation without Increasing Flood Risk in Mega Cascade Reservoirs. Energy, 143: 785-796. https://doi.org/10.1016/j.energy.2017.11.035
      Zhu, Y., Peng, M., Zhang, P., et al., 2021. Warning Decision-Making for Landslide Dam Breaching Flood Using Influence Diagrams. Frontiers in Earth Science, 9: 679862. https://doi.org/10.3389/feart.2021.679862
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险? 地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      郭新蕾, 周兴波, 夏庆福, 等, 2017. 梯级水库群控制梯级极端工况泄洪安全分析. 水利学报, 48(10): 1157-1166.
      胡良明, 张志飞, 李仟, 等, 2018. 梯级水库土石坝连溃模拟及风险分析. 水力发电学报, 37(7): 65-73.
      李雷, 王仁钟, 盛金保, 等, 2006. 大坝风险评价与风险管理. 北京: 中国水利水电出版社.
      刘家宏, 周晋军, 王浩, 2023. 梯级水电枢纽群巨灾风险分析与防控研究综述. 水利学报, 54(1): 34-44.
      马黎, 田耘, 陈灵淳, 等, 2024. 梯级水库群溃坝洪水风险分析: 以澜沧江上游为例. 河南科学, 42(2): 157-164.
      孟颖, 唐玲玲, 2022. 考虑致灾后果的溃坝洪水风险评估与等级划分. 长江科学院院报, 39(10): 61-65, 96.
      王建中, 孙万光, 李晓军, 等, 2025. 梯级水库心墙坝连溃过程数值模拟. 中国农村水利水电(4): 7-13.
      王霞, 郑雄伟, 陈志刚, 2009. 某梯级水库溃坝应急分析. 水利规划与设计(1): 52-53, 70.
      许唯临, 陈华勇, 薛阳, 等, 2013. 梯级库群的连锁溃决. 北京: 中国水利水电出版社.
      杨彦龙, 沈海尧, 黄维, 2022. 混凝土坝破坏模式及溃口几何参数探讨. 大坝与安全(3): 1-9.
      杨泽文, 吴兵兵, 刘维明, 等, 2025. 高能溃决洪水侵蚀机理与地貌效应研究进展. 地球科学, 50(2): 718-736. doi: 10.3799/dqkx.2024.009
      于子波, 向衍, 孟颖, 等, 2021. 梯级水库连溃风险分析及洪水演进模拟. 人民珠江, 42(8): 11-16.
      周洪福, 聂德新, 王春山, 2015. 水电工程坝基玄武岩体波速与变形模量关系. 地球科学, 40(11): 1904-1912. doi: 10.3799/dqkx.2015.171
      周兴波, 陈祖煜, 黄跃飞, 等, 2015. 特高坝及梯级水库群设计安全标准研究Ⅲ: 梯级土石坝连溃风险分析. 水利学报, 46(7): 765-772.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(20)  / Tables(7)

      Article views (81) PDF downloads(2) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return