Citation: | Zeng Xiaowen, Wang Ming, Fan Jianjun, Yu Yunpeng, Luo Anbo, Hao Yujie, 2019. Geochemistry and Chronological Characteristics of the Early Cretaceous Mafic Dikes in the Asa Area, North Tibet: Constraints on the Closure Time of the Bangong-Nujiang Ocean. Earth Science, 44(7): 2408-2425. doi: 10.3799/qkx.2018.394 |
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
|
Barbey, P., Allé, P., Brouand, M., et al., 1995. Rare-Earth Patterns in Zircons from the Manaslu Granite and Tibetan Slab Migmatites (Himalaya) : Insights in the Origin and Evolution of a Crustally-Derived Granite Magma. Chemical Geology, 125(1-2): 1-17. https://doi.org/10.1016/0009-2541(95)00068-w
|
Chen, W. W., Zhang, S. H., Ding, J. K., et al., 2017. Combined Paleomagnetic and Geochronological Study on Cretaceous Strata of the Qiangtang Terrane, Central Tibet. Gondwana Research, 41: 373-389. https://doi.org/10.1016/j.gr.2015.07.004
|
Chen, L., Xu, J., Su, L., 2005. Characteristics of Cathode Fluorescence Spectrometer on Field Emission Environmental Scanning Electron Microscopy and Its Application in Zircon Research. Progress in Natural Science, 15(11): 1403-1408 (in Chinese with English abstract).
|
Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered Ca. 113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463. https://doi.org/10.1016/j.gr.2013.06.005
|
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy & Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
|
Davidson, J. P., 1987. Crustal Contamination Versus Subduction Zone Enrichment: Examples from the Lesser Antilles and Implications for Mantle Source Compositions of Island Arc Volcanic Rocks. Geochimica et Cosmochimica Acta, 51(8): 2185-2198. https://doi.org/10.1016/0016-7037(87)90268-7
|
Duretz, T., Gerya, T. V., May, D. A., 2011. Numerical Modelling of Spontaneous Slab Breakoff and Subsequent Topographic Response. Tectonophysics, 502(1-2): 244-256. https://doi.org/10.1016/j.tecto.2010.05.024
|
Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet: Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12): 1504-1520. https://doi.org/10.1080/00206814.2014.947639
|
Fan, J. J., Li, C., Wang, M., et al., 2017. Reconstructing in Space and Time the Closure of the Middle and Western Segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231-249. https://doi.org/10.1007/s00531-017-1487-4
|
Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/g19887.1
|
Fitton, J. G., Saunders, A. D., Norry, M. J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4): 197-208. https://doi.org/10.1016/s0012-821x(97)00170-2
|
Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463-513. https://doi.org/10.1093/petrology/19.3.463
|
Guan, J. L., Geng, Q. R., Wang, G. Z., et al., 2014. Zircon U-Pb Dating and Hf Isotope Compositions of the Risong Granite in North Gangdese, Tibet. Acta Geologica Sinica, 88(1):36-52 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201401004
|
Geng, Q. R., Zhang, Z., Peng, Z. M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-Metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77: 163-175. https://doi.org/10.1016/j.oregeorev.2016.02.018
|
Han, B. F., Wang, S. G., Kagami, H., 1999. Trace Element and Nd-Sr Isotope Constraints on Origin of the Chifeng Flood Basalts, North China. Chemical Geology, 155(3-4): 187-199. https://doi.org/10.1016/s0009-2541(98)00172-7
|
He, X. X., Xiao, L., Wang, G. C., et al., 2015. Petrogenesis and Geological Implications of Late Paleozoic Intermediate-Basic Dyke Swarms in Western Junggar. Earth Science, 40(5):777-796 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.064
|
Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
|
Hu, J., Wan, Y. W., Tao, Z., et al., 2014. New Geochemistry and Geochronology Evidences Related to Southward Subduction of Tethys Ocean Basin in West Segment of Bangonghu-Nujiang Suture Belt. Journal of Chengdu University of Technology (Science & Technology Edition), 41(4):506-515 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201404014
|
Hu, J., Wu, X. S., Wan, Y. W., et al., 2016. Geochemistry and Geochronology Characteristics, and Tectonic Setting of the IntrusiveRocks in the Bangong Co-Nujiang suture, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(6):737-750 (in Chinese with English abstract).
|
Hu, X. C., Xia, B., Huang, Q. T., et al., 2016. Geochemistry, Geochronology, and Petrogenesis of Mid-Cretaceous Talabuco Volcanic Rocks, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 59(4): 484-501. https://doi.org/10.1080/00206814.2016.1230524
|
Huang, Q. T., Li, J. F., Xia, B., et al., 2015. Petrology, Geochemistry, Chronology and Geological Significance of Jiang Tso Ophiolite in Middle Segment of Bangonghu-Nujiang Suture Zone, Tibet. Earth Science, 40(1):34-48 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.003
|
Huang, Q. T., Cai, Z. R., Xia, B., et al., 2015. Geochronology, Geochemistry, and Sr-Nd-Pb Isotopes of Cretaceous Granitoids from Western Tibet: Petrogenesis and Tectonic Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 58(1): 95-111. https://doi.org/10.1080/00206814.2015.1056257
|
Jung, C., Jung, S., Hoffer, E., et al., 2006. Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany. Journal of Petrology, 47(8): 1637-1671. https://doi.org/10.1093/petrology/egl023
|
Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/s0016-7037(96)00349-3
|
Kang, Z. Q., Xu, J. F., Wang, B. D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=ceb08474eb2a74f4063e6d367cf5f048&encoded=0&v=paper_preview&mkt=zh-cn
|
Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933. https://doi.org/10.1130/b26033.1
|
La Flèche, M. R. L., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3
|
LassiterJ. C., DepaoloD. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints. In: Mahoney, J. J., Coffin, M. F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, John Wiley & Sons, New York.
|
Leat, P. T., Riley, T. R., Wareham, C. D., et al., 2002. Tectonic Setting of Primitive Magmas in Volcanic Arcs: An Example from the Antarctic Peninsula. Journal of the Geological Society, 159(1): 31-44. https://doi.org/10.1144/0016-764900-132
|
Li, S. M., Zhu, D. C., Wang, Q., et al., 2016. Slab-Derived Adakites and Subslab Asthenosphere-Derived OIB-Type Rocks at 156±2 Ma from the North of Gerze, Central Tibet: Records of the Bangong-Nujiang Oceanic Ridge Subduction during the Late Jurassic. Lithos, 262: 456-469. https://doi.org/10.1016/j.lithos.2016.07.029
|
Liu, W. L., Xia, B., Zhong, Y., et al., 2014a. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4): 430-447. https://doi.org/10.1080/00206814.2013.873356
|
Liu, D. L., Huang, Q. S., Fan, S. Y., et al., 2014b. Subduction of the Bangong-Nujiang Ocean: Constraints from Granites in the Bangong Co Area, Tibet. Geological Journal, 49(2): 188-206. https://doi.org/10.1002/gj.2510
|
Liu, Y., Wang, M., Li, C., et al., 2018. Late Cretaceous Tectono-Magmatic Activity in the Nize Region, Central Tibet: Evidence for Lithospheric Delamination beneath the Qiangtang-Lhasa Collision Zone. International Geology Review, 61(5): 562-583. https://doi.org/10.1080/00206814.2018.1437789
|
Ludwig, K. R., 2000. ISOPLOT/Ex, Version 2.2, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley.
|
Lustrino, M., 2005. How the Delamination and Detachment of Lower Crust can Influence Basaltic Magmatism. Earth-Science Reviews, 72(1-2): 21-38. https://doi.org/10.1016/j.earscirev.2005.03.004
|
Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176: 315-332. https://doi.org/10.1016/j.lithos.2013.04.006
|
Mai, Y. J., Yang, W. G., Zhu, L. D., et al., 2018. Zircon U-Pb Age and Geochemistry of Volcanic Rocks From the Qushenla Formation in the Chagelong Area of Southern Margin of Qiangtang, Tibet—Restriction on the Evolution Time Limit of the Ban Gong Lake Nu River Ocean Basin. Journal of Mineralogy and Petrology, 38(2):70-79 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201802009
|
Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321
|
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
|
Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
|
Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization Beneath the South Sandwich Island Arc. Journal of Petrology, 36(4): 1073-1109. https://doi.org/10.1093/petrology/36.4.1073
|
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
|
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust, In: Heinrich, D. H., Karl, K. T., eds., Treatise on Geochemistry. Elsevier-Pergamon, Oxford.
|
Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 3-1-3-38. https://doi.org/10.1029/2001rg000108
|
Sun, S. J., Zhang, L. P., Ding, X., et al., 2015. Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis. Acta Petrologica Sinica, 31(7):2063-2077 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of Ca. 110 Ma Magmatism in the Northern Lhasa Terrane, Tibet: Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168-169: 144-159. https://doi.org/10.1016/j.lithos.2013.01.012
|
Tang, Y., Zhai, Q. G., Liu, T., et al., 2015. LA-ICP-MS Zircon U-Pb Dating, Geochemical Fea-Tures and Geological Significance of the Daru Co Granite Porphyry in Baingoin County, Tibet. Geological Bulletin of China, 34(10):1802-1811 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201510004
|
van Hunen, J., Miller, M. S., 2015. Collisional Processes and Links to Episodic Changes in Subduction Zones. Elements, 11(2): 119-124. https://doi.org/10.2113/gselements.11.2.119
|
Wang, S. M., Ma, C. Q., Wang, L. Y., et al., 2010. SHRIMP Zircon U-Pb Dating, Geochemistry and Genesis of Early Cretaceous Basic Dykes from the Dabie Orogen. Earth Science, 35(4):572-584 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.073
|
Wang, M., Li, C., Wu, Y. W., et al., 2013. Geochronology, Geochemistry, Hf Isotopic Compositions and Formation Mechanism of Radial Mafic Dikes in Northern Tibet. International Geology Review, 56(2): 187-205. https://doi.org/10.1080/00206814.2013.825076
|
Wang, X. C., Wilde, S. A., Xu, B., et al., 2016. Origin of Arc-Like Continental Basalts: Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination. Lithos, 261: 5-45. https://doi.org/10.1016/j.lithos.2015.12.014
|
Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3):413-421 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
|
Weaver, B., Kar, A., Davidson, J., et al., 1996. Geochemical Characteristics of Volcanic Rocks from Ascension Island, South Atlantic Ocean. Geothermics, 25(4-5): 449-470. https://doi.org/10.1016/0375-6505(96)00014-4
|
Wei, Y. F., Deng, Z. J., Zhao, Z. Q., et al., 2017. LA-ICP-MS Ziron U-Pb Dating, Geochemical Characteristics and Geoglogical Implication of Late Early Cretaceous Diorite in Bieruozecuo Area. Xinjiang Geology, 35(3):228-234 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz201703001
|
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
|
Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
|
Wu, H., Li, C., Hu, P. Y., et al., 2013. The Discovery of Qushenla Volcanic Rocks in Tasepule Area of Nyima Country, Tibet, and Its Geological Significance. Geological Bulletin of China, 32(7):1014-1026 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201307007
|
Wu, H., Li, C., Hu, P. Y., et al., 2014. The Discovery of Early Cretaceous Bimodal Volcanic Rocks in the Dachagou Area of Tibet and Its Significance. Geological Bulletin of China, 33(11):1804-1814 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201411016
|
Wu, H., Li, C., Hu, P. Y., et al., 2014. Early Cretaceous (100-105 Ma) Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for the Bangong-Nujiang Ocean Subduction and Slab Break-Off. International Geology Review, 57(9/10): 1172-1188. https://doi.org/10.1080/00206814.2014.886152
|
Wu, H., Li, C., Xu, M. J., et al., 2015. Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for Slab Roll-Back and Subsequent Slab Break-Off of the Lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97: 51-66. https://doi.org/10.1016/j.jseaes.2014.10.014
|
Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
|
Xie, L., Dun, D., Zhu, L. D., et al., 2015. Zircon U-Pb Geochronology, Geochemistry and Geological Significance of the Zhaduding A-Type Granites in Northern Gangdise, Tibet. Geology in China, 42(5): 1214-1227 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201505004
|
Yan, G. C., Wang, B. D., Liu, H., et al., 2017. LA-ICP-MS Zircon U-Pb Ages of Adakitic Rocks in Dongco Area, Tibet, and Their Tectonic Implications. Geological Bulletin of China, 36(10):1772-1782 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201710009
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
|
Yuan, H. L., Gao, S., Liu, X. M., et al., 2010. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
|
Yogodzinski, G. M., Lees, J. M., Churikova, T. G., et al., 2001. Geochemical Evidence for the Melting of Subducting Oceanic Lithosphere at Plate Edges. Nature, 409(6819): 500-504. https://doi.org/10.1038/35054039
|
Zeng, X. W., Wang, M., Fan, J. J., et al., 2018. Geochemistry and Geochronology of Gabbros from the Asa Ophiolite, Tibet: Implications for the Early Cretaceous Evolution of the Meso-Tethys Ocean. Lithos, 320-321: 192-206. https://doi.org/10.1016/j.lithos.2018.09.013
|
Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002
|
Zhang, L. L., Zhu, D. C., Zhao, Z. D., et al., 2011. Early Cretaceous Granitoids in Xainza, Tibet: Evidence of Slab Break-Off. Acta Petrologica Sinica, 27(7):1938-1948 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
|
Zhang, X. F., Li, Y. G., Cao, X. M., et al., 2014. LA-ICP-MS zircon U-Pb Age and Geochemical Charac-teristics of the Acid intrusive rocks in the western part of Bangong Lake-Nujiang River Suture Zone. Geological Bulletin of China, 33(7):984-994 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201407006
|
Zhong, Y., Hu, X. C., Liu, W. L., et al., 2017. Age and Nature of the Jurassic-Early Cretaceous Mafic and Ultramafic Rocks from the Yilashan Area, Bangong-Nujiang Suture Zone, Central Tibet: Implications for Petrogenesis and Tectonic Evolution. International Geology Review, 60(10): 1244-1266. https://doi.org/10.1080/00206814.2017.1385033
|
Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension- and Arc-Type Magmatism in Southern Tibet: Paleogeographic Implications. Geological Society of America Bulletin, 122(7-8): 979-993. https://doi.org/10.1130/b30062.1
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
|
Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023
|
Zhu, D. C., Wang, Q., Zhao, Z. D., 2017. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record: Method and Examples. Science China Earth Sciences, 60(6): 1040-1056. https://doi.org/10.1007/s11430-016-9041-x
|
陈莉, 徐军, 苏犁, 2005.场发射环境扫描电子显微镜上阴极荧光谱仪特点及其在锆石研究中的应用.自然科学进展, 15(11): 1403-1408. doi: 10.3321/j.issn:1002-008X.2005.11.019
|
关俊雷, 耿全如, 王国芝, 等, 2014.北冈底斯带日松花岗岩体的锆石U-Pb测年和Hf同位素组成.地质学报, 88(1):36-52. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201401004
|
贺新星, 肖龙, 王国灿, 等, 2015.西准噶尔晚古生代中基性岩墙群岩石学成因及地质意义.地球科学, 40(5):777-796. http://earth-science.net/WebPage/Article.aspx?id=3082
|
胡隽, 万永文, 陶专, 等, 2014.班公湖-怒江缝合带西段特提斯洋盆南向俯冲的地球化学和年代学证据.成都理工大学学报(自然科学版), 41(4):506-515. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201404014
|
胡隽, 吴小双, 万永文, 等, 2017.班公湖-怒江缝合带侵入岩地球化学和年代学特征及形成构造背景.成都理工大学学报(自然科学版), 43(6):737-750. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201606012
|
黄强太, 李建峰, 夏斌, 等, 2015.西藏班公湖-怒江缝合带中段江错蛇绿岩岩石学、地球化学、年代学及地质意义.地球科学, 40(1):34-48. http://earth-science.net/WebPage/Article.aspx?id=3014
|
康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022
|
麦源君, 杨文光, 朱利东, 等, 2018.西藏羌塘南缘查格隆去申拉组火山岩锆石U-Pb年龄、地球化学特征——对班公湖-怒江洋盆演化时限的制约.矿物岩石, 38(2):70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201802009
|
孙赛军, 张丽鹏, 丁兴, 等, 2015.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因.岩石学报, 31(7):2063-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
|
唐跃, 翟庆国, 刘通, 等, 2015.西藏班戈县达如错花岗斑岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义.地质通报, 34(10):1802-1811. doi: 10.3969/j.issn.1671-2552.2015.10.004
|
王世明, 马昌前, 王琳燕, 等, 2010.大别山早白垩世基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及成因.地球科学, 35(4):572-584. http://earth-science.net/WebPage/Article.aspx?id=2001
|
汪云亮, 张成江, 修淑芝, 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3): 413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
|
魏永峰, 邓泽锦, 赵志强, 等, 2017.别若则错地区早白垩世晚期闪长岩LA-ICP-MS锆石U-Pb测年、地球化学特征及地质意义.新疆地质, 35(3) :228-234. http://d.old.wanfangdata.com.cn/Periodical/xjdz201703001
|
吴浩, 李才, 胡培远, 等, 2013.西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义.地质通报, 32(7): 1014-1026. doi: 10.3969/j.issn.1671-2552.2013.07.007
|
吴浩, 李才, 胡培远, 等, 2014.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义.地质通报, 33(11): 1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016
|
解龙, 顿都, 朱利东, 等, 2015.西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义.中国地质, 42(5):1214-1227. doi: 10.3969/j.issn.1000-3657.2015.05.004
|
闫国川, 王保弟, 刘函, 等, 2017.西藏洞错埃达克质火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义.地质通报, 36(10):1772-1782. doi: 10.3969/j.issn.1671-2552.2017.10.009
|
张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7):581–588. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
|
张向飞, 李佑国, 曹晓民, 等, 2014.班公湖-怒江缝合带西段酸性侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.地质通报, 33(7):984-994. doi: 10.3969/j.issn.1671-2552.2014.07.006
|