• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 27 Issue 6
    Jun.  2002
    Turn off MathJax
    Article Contents
    JIN Zhi-jun, ZHANG Liu-ping, YANG Lei, HU Wen-xuan, 2002. Primary Study of Geochemical Features of Deep Fluids and Their Effectiveness on Oil/Gas Reservoir Formation in Sedimental Basins. Earth Science, 27(6): 659-665.
    Citation: JIN Zhi-jun, ZHANG Liu-ping, YANG Lei, HU Wen-xuan, 2002. Primary Study of Geochemical Features of Deep Fluids and Their Effectiveness on Oil/Gas Reservoir Formation in Sedimental Basins. Earth Science, 27(6): 659-665.

    Primary Study of Geochemical Features of Deep Fluids and Their Effectiveness on Oil/Gas Reservoir Formation in Sedimental Basins

    • Received Date: 2002-08-20
    • Publish Date: 2002-11-25
    • This paper focuses on geochemical features of deep fluids (mainly mantle-derived fluid) and their effect on oil/gas reservoirs formation in Dongiyng sag, Jiyang depression and Central Tarim basin, by using isotopic geochemistry, organic geochemistry and thermodynamics. It is found that both CO2- (H2O+CO2) and H- (H2O+CH4+H2) rich fluids from the mantle are injected into Dongying sag and CO2-rich fluid in Central Tarim basin. The quantitative study of heat transformation of deep fluid ascendance shows that the mantle is an effective heat carrier. The evidence of thermal anomalies in Dongying sag and Central Tarim basin proves the existence of heat effect of deep fluids. Hydrocarbon generation from kerogen degragation not only needs heat but also actually requires hydrogen. It is known that mantle-derived, hydrogen-rich fluid may increase hydrocarbon production when the fluid meets source rocks in basins. Experimental hydrogenation simulation shows that hydrogen addition increases the production greatly. For sapropelic kerogen, the effect of hydrogenation becomes evident after fastigium of hydrocarbon generation and the production can increase up to 147%. While for humic kerogen, hydrocarbon production by hydrogenation can be increased at every stage of thermal evolution. It is found that deep fluids increase production rate of the source rocks in Dongying sag and Central Tarim basin. Hence it can be concluded that the mantle-derived fluids have great influence on hydrocarbon generation from source rocks in both energy and substance supply.

       

    • loading
    • [1]
      Navon O, HutcheonI D, RossmanGR, et al. Mantle-derived fluids in diamond micro-inclusions[J]. Nature, 1988, 335 (6193): 784-789. doi: 10.1038/335784a0
      [2]
      张铭杰, 王先彬, 李立武. 地幔流体组成[J]. 地学前缘, 2000, 7(2): 401-412. doi: 10.3321/j.issn:1005-2321.2000.02.009

      ZHANG M J, WANG X B, LI L W. Composition of mantle fluid[J]. Earth Science Frontiers, 2000, 7(2): 401-412. doi: 10.3321/j.issn:1005-2321.2000.02.009
      [3]
      戴金星, 宋岩, 戴春森, 等. 中国东部无机成因气及其气藏形成条件[M]. 北京: 科学出版社, 1995.

      DAI J X, SONG Y, DAI C S, et al. Inorganic origingas and its accumulation conditions in eastern China[M]. Bejing: Science Press, 1995.
      [4]
      高波, 陶明信, 王万春. 深部热流体对油气成藏的影响[J]. 矿物岩石地球化学通报, 2001, 20(1): 30-34. doi: 10.3969/j.issn.1007-2802.2001.01.007

      GAO B, TAO M X, WANG W C. Influence of deeply sourced thermal fluid on the formation of hydrocarbon reservoirs[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20 (1): 30-34. doi: 10.3969/j.issn.1007-2802.2001.01.007
      [5]
      路凤香. 深部地幔及地幔流体[J]. 地学前缘, 1996, 3(3- 4): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX801.006.htm

      LU F X. Deep mantle and its fluids[J]. Earth Science Frontiers, 1996, 3(3-4): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX801.006.htm
      [6]
      Bell D R, Rossman G R. Waterin Earth's mantle: the role of nominally anhydrous minerals[J]. Science, 1992, 255: 1391 -1397. doi: 10.1126/science.255.5050.1391
      [7]
      杜乐天, 王驹. 气体地球动力学——一个重要的研究方向[J]. 地球科学进展, 1993, 8(6): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199306009.htm

      DU L T, WANG J. Gas geo-dynamics-an important research field[J]. Advance in Earth Sciences, 1993, 8(6): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199306009.htm
      [8]
      Haggerty S E. Superkimberlites: a geodynamic diamond window to the Earth's core[J]. EPSC, 1994, 122: 57-69.
      [9]
      杜乐天. 烃碱流体地球化学原理[M]. 北京: 科学出版社, 1995.478, 490.

      DU L T. Geochemical principles of hydrcarbon alkali-fluids [M]. Beijing: Science Press, 1995.478, 490.
      [10]
      Badding JV, Hemley RJ, Mao HK. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride[J]. Nature, 1991, 253(5018): 421-424.
      [11]
      陈丰. 氢——地球深部流体的重要源泉[J]. 地学前缘, 1996, 3(3-4): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY603.007.htm

      CHEN F. Hydrogen-the important source of fluid in Earth interior[J]. Earth Science Frontiers, 1996, 3(3-4): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY603.007.htm
      [12]
      Angino E E, Coveney R M. Hydrogen and nitrogen-origin, distribution, and abundance[J]. Oil & Gas Journal, 1984, 82 (3): 142-146.
      [13]
      Coveney R M, Goebel E D, Zeller E, et al. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bull, 1987, 71 (1): 39-48.
      [14]
      Marty B, Gunnlaugsson E, Jambon A, et al. Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland[J]. Chemical Geology, 1991, 91: 207-225. doi: 10.1016/0009-2541(91)90001-8
      [15]
      LesniakP M, Sakai H, Ishibashi J. Mantle helium signal in the West Carpathians, Poland[J]. Geochemical Journal, 1997, 31 (6): 383-394. doi: 10.2343/geochemj.31.383
      [16]
      王国安, 申建中, 季美英. 塔北、塔中天然气中CO2的碳同位素组成及成因探讨[J]. 地质地球化学, 2001, 29(1): 36-39. doi: 10.3969/j.issn.1672-9250.2001.01.007

      WANG G A, SHEN J Z, JI M Y. Carbon istopotic composition and origin of carbon dioxide in natural gases in northern and central Tarim basin[J]. Geology-Geochemistry, 2001, 29 (1): 36-39. doi: 10.3969/j.issn.1672-9250.2001.01.007
      [17]
      钟广发, 马在田, 刘瑞林. 塔里木盆地奥陶系萤石脉- 油气叠合成藏作用——高分辨率成像测井资料提供的证据[J]. 高校地质学报, 2000, 6(4): 576-582. doi: 10.3969/j.issn.1006-7493.2000.04.010

      ZHONG GF, MAZ T, LIU RL. Polygenesis of fluorite veins and hydrocarbons in Ordovician in Tarim basin[J]. Geological Journal of China Universities, 2000, 6(4): 576-582. doi: 10.3969/j.issn.1006-7493.2000.04.010
      [18]
      Duan Z, Moller N, Weare J H. Molecular dynamics simulation of pVt properties of geological fluids and ageneral equation of state of nonpolar and weakly polar gases up to2 000 k and 20 000 bar[J]. Geochim Cosmochim Acta, 1992, 56: 3839 -3845. doi: 10.1016/0016-7037(92)90175-I
      [19]
      Duan Z, Moller N, Weare J H. A general equation of state for super critical fluid mixtures and molecular dynamics simulation of mixture PVTX properties[J]. Geochim Cosmochim Acta, 1996, 60: 1209-1216. doi: 10.1016/0016-7037(96)00004-X
      [20]
      孙睿, 胡文, 段振豪. 超临界流体热力学函数的理论计算[J]. 地质论评, 2000, 46(2): 167-177. doi: 10.3321/j.issn:0371-5736.2000.02.007

      SUN R, HU W X, DUAN Z H. Theoretical calculation of thermodynamic functions of super critical fluids[J]. Geological Review, 2000, 46(2): 167-177. doi: 10.3321/j.issn:0371-5736.2000.02.007
      [21]
      Jin Q, Xiong S, Lu P. Catalysis and hydrogenation: volcanic activity and hydrocarbon generation in rift basins, eastern China [J]. Applied Geochemistry, 1999, 14(5): 547-558. doi: 10.1016/S0883-2927(98)00086-9
      [22]
      Jin Z, Sun Y, Yang L. Influences of deep fluids on organic matter of source rocks from Dongying depression, East China [J]. Energy Exploration & Exploitation, 2001, 19(5): 479- 486.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(4)

      Article views (3932) PDF downloads(31) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return