• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 28 Issue 2
    Mar.  2003
    Turn off MathJax
    Article Contents
    OU Xin-gong, JIN Zhen-min, JIN Shu-yan, XU Hai-jun, 2003. Thermal Conductivity of Donghai UHP Eclogite and Its Significance for Studying Continental Scientific Drilling. Earth Science, 28(2): 129-136.
    Citation: OU Xin-gong, JIN Zhen-min, JIN Shu-yan, XU Hai-jun, 2003. Thermal Conductivity of Donghai UHP Eclogite and Its Significance for Studying Continental Scientific Drilling. Earth Science, 28(2): 129-136.

    Thermal Conductivity of Donghai UHP Eclogite and Its Significance for Studying Continental Scientific Drilling

    • Received Date: 2003-01-17
    • Publish Date: 2003-03-25
    • UHP eclogite samples were collected from surface exposures around Chinese Continental Scientific Drilling (CCSD) drill-site in Donghai area have been measured on thermal conductivity to investigate the effect of mineral components and texture on thermal conductivity (TC) of eclogite. Measured thermal conductivities vary from 3.222 to 3.716 Wm-1·K-1 with average value 3.511 Wm-1·K-1, which depend on the volume ratio of garnet and omphacite (VGrt/VOmp) in the rocks. This correlation was fitted to the function K=3.767-0.18× (VGrt/VOmp), which shows the thermal conductivity of eclogite in this area decreased as increasing of VGrt/VOmp. Inhomogeneous distribution of minerals and the foliation texture in rocks also significantly affect the value of thermal conductivity and induce the anisotropy up to 10% in eclogite. For temperature dependence, according to calculations from the correlation between K-T, thermal conductivities under high temperature were also fitted to a function: K (T) =1/ (7.85×10-2+6.95×10-4×T), T is absolute temperature. Based on this function and the published geothermal data of this area, a depth dependence of thermal conductivity can be concluded. The K of eclogite decreased as the increasing depth of CCSD drill hole. The K values of eclogite in surface and in bottom of hole are 3.511 Wm-1·K-1 and 2.687 Wm-1·K-1, respectively. The K of eclogite will be predicted to be decreased about 24% from surface to the end of 5 000 m depth of CCSD. These research results are helpful to establish the geothermal model of this area and to interpret well logging results from CCSD.

       

    • loading
    • [1]
      Hofmeister A M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes[J]. Science, 1999, 283: 1699-1706. doi: 10.1126/science.283.5408.1699
      [2]
      Dubuffet F, Yuen D A, Rabinowicz M. Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection[J]. Earth and Planetary Science Letters, 1999, 171(3): 401-409. doi: 10.1016/S0012-821X(99)00165-X
      [3]
      Tommasi A, Gibert B, Seipold U, et al. Anisotropy of thermal diffusivity in the upper mantle[J]. Nature, 2001, 411: 783-786. doi: 10.1038/35081046
      [4]
      Jokinen J, Kukkonen I T. Inverse simulation of the lithospheric thermal regime using the Monte Carlo method[J]. Tectonophysics, 1999, 306(3-4): 293-310. doi: 10.1016/S0040-1951(99)00062-1
      [5]
      Seipold U, Huenges E. Thermal properties of gneisses and amphibolites-high pressure and high temperature investigations of KTB-rock samples[J]. Tectonophysics, 1998, 291(1-4): 173-178. doi: 10.1016/S0040-1951(98)00038-9
      [6]
      Arndt J, Bartel T, Scheuber E, et al. Thermal and rheological properties of granodioritic rocks from the Central Andes, North Chile[J]. Tectonophysics, 1997, 271(1-2): 75-88. doi: 10.1016/S0040-1951(96)00218-1
      [7]
      Vasseur G, Brigaud F, Demongodin L. Thermal conductivity estimation in sedimentary basins[J]. Tectonophysics, 1995, 244(1-3): 167-174. doi: 10.1016/0040-1951(94)00225-X
      [8]
      熊亮萍, 胡圣标, 汪缉安. 中国东南地区岩石热导率值的分析[J]. 岩石学报, 1994, 10(3): 323-329. doi: 10.3321/j.issn:1000-0569.1994.03.010

      XIONG L P, HU S B, WANG J A. Analysis on the thermal conductivity of rocks from SE China[J]. Acta Petro Sinica, 1994, 10(3): 323-329. doi: 10.3321/j.issn:1000-0569.1994.03.010
      [9]
      沈显杰, 张文仁, 陆秀文, 等. 地热-Ⅱ型稳定分棒式热导仪—岩石热导率精密测量装置[J]. 岩石学报, 1987, 1: 86-95. SHEN X J, ZHANG W R, LU X W, et al. Geotherm-Ⅱ model thermal conductivity meter of steady-stage divided 134地球科学—中国地质大学学报第28卷 doi: 10.3321/j.issn:1000-0569.1987.01.010
      [10]
      赵永信, 杨淑贞, 张文仁, 等. 岩石热导率的温压实验及分析[J]. 地球物理学进展, 1995, 10(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.009.htm

      ZHAO Y X, YANG S Z, ZHANG W R, et al. An experimental study of rock thermal conductivity under different temperature and pressure[J]. Progress in Geophysics, 1995, 10(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.009.htm
      [11]
      Xu Z, Yang W, Zhang Z, et al. Scientific significance and site-selection researches of the first Chinese scientific deep drillhole[J]. Continental Dynamics, 1998, 3: 1-13.
      [12]
      Xu Z, Yang W, Yang J, et al. Chinese continental scientific drilling program in the Sulu ultrahigh pressure metamorphic belt[J]. ICDP Newsletter, 2000, 2: 13-16.
      [13]
      Rauen A, Winter H. Petrophysical properties[A]. In: Emmermann R, Althaus E, Giese P, et al, eds. KTB Report 95-2[C]. Hannover: Hannover Press, 1995. 24-28.
      [14]
      Clauser C, Huenges E. Thermal conductivity of rocks and minerals[A]. In: Ahrens T, ed. AGU Handbook of physical constant Am Geophys[C]. Union, Washington, NY, 1995, Section 3.9, 105-126.
      [15]
      Buntebarth G. Thermal properties of KTB Oberpfalz VB core samples at elevated temperature and pressure[J]. Sci Drilling, 1991, 2: 73-80.
      [16]
      Diment W H, Pratt H R. Thermal conductivity of some rock-forming minerals: a tabulation[R]. USGS open file report 88-690, US Geol Survey, Denver Co, 1988. 15.
      [17]
      Zoth G, H‐nel R. Appendix of thermal conductivity[A]. In: H‐nel R, Rybach L, Stegena L, eds. Handbook of Terrestrial heat flow density determination[C]. Dordrecht: Kluwer Press, 1988. 449-466.
      [18]
      Burkhardt H, Honarmand H, Pribnow D. Test measurements with a new thermal conductivity borehole tool[J]. Tectonophysics, 1995, 244(1-3): 161-165. doi: 10.1016/0040-1951(94)00224-W
      [19]
      Sass J H, Lachenbruch A H, Moses TH. Heat flow from a scientific research well at Cajon Pass, California[J]. J Geophys Res, 1992, 97(B4): 5017-5030. doi: 10.1029/91JB01504
      [20]
      Seipold U. Temperature dependence of thermal transport properties of crystalline rocks — a general law[J]. Tectonophysics, 1998, 291(1-4): 161-171. doi: 10.1016/S0040-1951(98)00037-7
      [21]
      汪集, 胡圣标, 程本合, 等. 中国大陆科学钻探靶区深部温度预测[J]. 地球物理学报, 2001, 44(6): 774-782. doi: 10.3321/j.issn:0001-5733.2001.06.006

      WANG J Y, HU S B, CHENG B H, et al. Prediction of deep temperature in the target area of Chinese continental scientific drilling[J]. Chinese Journal of Geophysics, 2001, 44(6): 774-782. doi: 10.3321/j.issn:0001-5733.2001.06.006
      [22]
      Wang J, Hu S, Yang W, et al. Geothermal measurements in the pilot-boreholes of the China continental scientific drilling[J]. Chinese Sci Bull, 2001, 46(20): 1745-1748.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(3)

      Article views (3921) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return