• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 28 Issue 3
    May  2003
    Turn off MathJax
    Article Contents
    ZHENG Jian-ping, LU Feng-xiang, YU Chun-mei, O'Reilly S Y, 2003. Mantle Replacement: Evidence from Comparison in Trace Elements between Peridotite and Diopside from Refractory and Fertile Mantle, North China. Earth Science, 28(3): 235-240.
    Citation: ZHENG Jian-ping, LU Feng-xiang, YU Chun-mei, O'Reilly S Y, 2003. Mantle Replacement: Evidence from Comparison in Trace Elements between Peridotite and Diopside from Refractory and Fertile Mantle, North China. Earth Science, 28(3): 235-240.

    Mantle Replacement: Evidence from Comparison in Trace Elements between Peridotite and Diopside from Refractory and Fertile Mantle, North China

    • Received Date: 2002-12-30
    • Publish Date: 2003-05-25
    • In the eastern part of the North China block, the refractory peridotite xenoliths in Cenozoic Hebi basalts (Henan Province) are regarded as the shallow relics of the cratonic mantle; while the fertile peridotite xenoliths in Cenozoic Shanwang basalts (Shandong Province) are regarded as the newly accreted mantle. In this paper, a comparison is made between the major and trace elements of the whole rocks and the major elements of the component minerals and the trace elements of the diopsides. The results show that Hebi "cratonic" peridotites and Shanwang "oceanic" ones, respectively, represent the products of 15%-25% and 1%-5% of fractional melting for the primary mantle. These products were metasomated by the silicate carbonatite melt. The mantle metasomatism in the former is stronger than that in the latter. The solidus temperature of the cratonic lithospheric peridotite fell due to the long-term metasomatism of the mantle molten/fluid bodies. The melt underplated at the basement of the lower crust, created the crust-mantle transition zone and resulting in the huge heat and material exchange. The ensuing decreased temperature after Eogene period resulted in the uplifted asthenospheric cooling and underplating at the lithospheric basement for the newly accreted lithosphere. Therefore, the Mesozoic-Cenozoic (relative to Paleozoic) lithospheric thinning did not initiate the simple decrease in lithospheric thickness arising from the asthenospheric upwelling. Instead, this thinning created the replacement process of the accompanying cratonic mantle by the newly accreted one.

       

    • loading
    • [1]
      Menzies M A, Fan W M, Zhang M. Paleozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China[J]. Geol Soc Spec Pub, 1993, 76: 71-81. doi: 10.1144/GSL.SP.1993.076.01.04
      [2]
      徐义刚. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J]. 矿物岩石地球化学通报, 1999, 18(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH901.000.htm

      XU YG. Roles of thermal-mechanic and chemical erosionin continental lithospheric thinning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1999, 18(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH901.000.htm
      [3]
      郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄[M]. 武汉: 中国地质大学出版社, 1999. 126.

      ZHENG J P. Mesozoic-Cenozoic mantle replacement and lithospheric thinning beneath the eastern China[M]. Wuhan: China University of Geosciences Press, 1999. 126.
      [4]
      路凤香, 郑建平. 华北地台古生代岩石圈地幔特征及深部过程[A]. 见: 池际尚, 路凤香. 华北地台金伯利岩及古生代岩石圈地幔特征[C]. 北京: 科学出版社, 1996.

      LU F X, ZHENG J P. Palaeozoic nature and deep processes of lithospheric mantle beneath North China[A]. In: CHI J S, LU F X, eds. Kimberlites and Palaeozoic mantle beneath North China platform[C]. Beijing: Science Press, 1996.
      [5]
      Zheng J P, O'Reilly S Y, Griffin W L, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, North China block[J]. International Geology Review, 1998, 40(6): 471-499. doi: 10.1080/00206819809465220
      [6]
      Xu X S, O'Reilly S Y, Griffin W L, et al. Genesis of young lithospheric mantle in SE China: a Lam-ICPMS study[J]. J Petrol, 1999, 40: 111-148.
      [7]
      Zheng J P, O'Reilly S Y, Griffin W L, et al. Relics of the Archean mantle beneath eastern part of the North China block and its significance in lithospheric evolution[J]. Lithos, 1999, (57): 43-66.
      [8]
      袁学诚. 岩石圈地球物理构造格架图[M]. 北京: 地质出版社, 1996.

      YUAN X C. Maps of geophysical from China[M]. Beijing: Geological Publishing House, 1996.
      [9]
      Wang J Y, Chen M X, Wang J A, et al. On the evolution of geothermal regime of North China basin[J]. Journal of Geodynamics, 1985, (4): 133-148.
      [10]
      Xu J W, Zhu G. Tectonic models of the Tanlu fault zone, eastern China[J]. International Geology Review, 1994, 36: 771-784. doi: 10.1080/00206819409465487
      [11]
      Deer W A, Howie RA, Zussman J. Rock-forming minerals[M]. London: Geological Society, 1997.
      [12]
      McDonough W F, Sun S S. The composition of the Earth [J]. Chem Geol, 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4
      [13]
      Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: an ion microprobe study of diopside in abyssal peridotites[J]. J Geophys Res, 1990, 95: 2661-2678. doi: 10.1029/JB095iB03p02661
      [14]
      Norman M D. Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia[J]. Contrib Mineral Petrol, 1998, 130: 240-255. doi: 10.1007/s004100050363
      [15]
      Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere [J]. J Petrol, 1998, 39: 1917-1930. doi: 10.1093/petroj/39.11-12.1917
      [16]
      Stalder R, Foley S F, Brey G P, et al. Mineral-aqueous fluid partitioning of trace elements at 900-1 200 ℃ and 3.0-5.7 GPa: new experimental implications for mantle metasomatism[J]. Geochim Cosmochim Acta, 1998, 62: 1781-1801. doi: 10.1016/S0016-7037(98)00101-X
      [17]
      Zangana N A, Downes H, Thirlwall M F, et al. Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic(French Massif Central): implications for the composition of the shallow lithospheric mantle[J]. Chem Geol, 1999, 153: 1135.
      [18]
      Blusztajn J, Shimizu N. Trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland[J]. Chemical Geology, 1994, 111: 227-243. doi: 10.1016/0009-2541(94)90091-4
      [19]
      Meen J K. Mantle metasomatism and carbonates: an experimental study of a complex relationship[J]. Geol Soc Am(Spec Pap), 1987, 215: 91-100.
      [20]
      Eggler D H. Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints[A]. In: Menzies M A, Hawkesworth C J, eds. Mantle metasomatism[C]. London: London Academic Press, 1992. 21-41.
      [21]
      Watson E B, Brenan J M. Fluids in lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and the implications for fluid transport, host-rock physical properties and fluid inclusion information[J]. Earth Planet Sci Lett, 1987, 85: 497-515. doi: 10.1016/0012-821X(87)90144-0
      [22]
      Zinngrebe E, Foley S F. Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment[J]. Contrib Mineral Petrol, 1995, 122: 79-96. doi: 10.1007/s004100050114
      [23]
      Li S G, Xiao Y, Liou D, et al. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: timing and processes[J]. Chemical Geology, 1993, 109: 89-111. doi: 10.1016/0009-2541(93)90063-O
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)  / Tables(2)

      Article views (4216) PDF downloads(23) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return