• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 30 Issue 5
    Sep.  2005
    Turn off MathJax
    Article Contents
    LI Qian-yu, TIAN Jun, WANG Pin-xian, 2005. Recognizing the Stratigraphic and Paleoclimatic Significance of Eccentricity Cycles. Earth Science, 30(5): 519-528.
    Citation: LI Qian-yu, TIAN Jun, WANG Pin-xian, 2005. Recognizing the Stratigraphic and Paleoclimatic Significance of Eccentricity Cycles. Earth Science, 30(5): 519-528.

    Recognizing the Stratigraphic and Paleoclimatic Significance of Eccentricity Cycles

    • Received Date: 2005-05-17
    • Publish Date: 2005-09-25
    • This paper introduces some new developments concerning orbital eccentricity in stratigraphic and paleoclimatic studies. The less than 0.2% error in calculating the current orbital model for the last 250 Ma makes possible stratigraphic subdivisions based upon eccentricity cycles. The newly erected international standard chronostratigraphic timescale uses the 405 ka long eccentricity cycles for separating major stratigraphic boundaries, and the Cenozoic Era now comprises E1 to E162 long eccentricity cycles, with the base dated at (65.5±0.3) Ma. The 100 ka and 405 ka eccentricity cycles have been found in many geological records, especially those paleoclimate proxies based upon physiochemical records from deep-sea drilling cores. Many important paleoclimatic events appear to have concurred with weak amplitude periods over the eccentricity band, indicating these periods were likely prone to the influence of such factors as the global carbon reservoir, ice caps, sea level and electromagnetic field, as well as regional tectonic reconfigurations. More and more studies show that the δ13C record is mainly related to orbital forcing over the eccentricity cycles, and its changes often precede δ18O changes, supporting the hypothesis that the carbon cycle is one of the key factors influencing the earth's climate.

       

    • loading
    • Beaufort, L., 1994. Climatic importance of the modulation of the 100 kyr cycle inferred from 16m. y. long Miocenerecords. Paleoceanography, 9: 821-834. doi: 10.1029/94PA02115
      Berger, A., 1977. Support for the astronomical theory of cli-matic change. Nature, 269: 44-45. doi: 10.1038/269044a0
      Berger, A., Imbrie, J., Hays, J. D., 1984. Milankovitch and climate. Reidel Publishing, Dordrecht.
      Berger, A., 1988. Milankovitch theory and climate. Review of Geophysics, 26 (4): 624-657. doi: 10.1029/RG026i004p00624
      Berger, A., Loutre, M. F., 1991. Insolation values for the cli-mate of the last 10 million years. Quat. Sci. Rev., 10: 297-317. doi: 10.1016/0277-3791(91)90033-Q
      Berger, A., Li, X. S., Loutre, M. F., 1999. Modeling north-ern hemisphere ice volume over the last 3 Ma. Quat. Sci. Rev., 18: 1-11. doi: 10.1016/S0277-3791(98)00033-X
      Berger, A., Loutre, M. F., Laskar, J., 1992. Stability of the astronomical frequencies over the earth's history for pa-leoclimate Studies, 255: 560-566. doi: 10.1126/science.255.5044.560
      Berger, W. H., Bickert, T., Jansen, E., et al., 1993. The cen-tral mystery of the Quaternary ice age. Oceanus, 36: 53-56.
      Berger, W. H., Jansen, E., 1994. Mid-Pleistocene climate shift—The Nansen connection. Geophys. Monogr., 84: 295-311.
      Berggren, W. A., Kent, D. V., Swisher, C. C., et al., 1995. A revised Cenozoic geochronology and chronostratigra-phy. In: Berggren, W. A., Kent, D. V., Aubry, M. P., et al., eds., Geochronology, time scales and global strati-graphic correlation. SEPMS pecial Publication, 54: 129-212.
      Clemens, S. C., Tiedemann, R., 1997. Eccentricity forcing of Pliocene-Early Pleistocene climate revealed in a marine oxygen-isotope record. Nature, 385: 801-804. doi: 10.1038/385801a0
      Coxall, H. K., Wilson, P. A., Pälike, H., et al., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433: 53-57. doi: 10.1038/nature03135
      Gradstein, F., Ogg, J., Smith, A., 2005. A geologic time scale 2004. Cambridge University Press, London.
      Hays, J. D., Imbrie, J., Shackleton, N. J., 1976. Variations of the earth's orbit: Pacemaker of the ice age. Science, 194: 1121-1132. doi: 10.1126/science.194.4270.1121
      Hodell, D. A., Charles, C. D., Ninnemann, U. S., 2000. Com-parison of interglacial stages in the South Atlantic sec-tor of the southern ocean for the past 450 kyr: Implica-tions for marine isotope stage MIS 11. Global and Plan-etary Change, 24: 7-26. doi: 10.1016/S0921-8181(99)00069-7
      Holbourn, A., Kuhnt, W., Schulz, M., 2004. Orbital paced climate variability during the Middle Miocene: High res-olution benthic foraminiferal stable-isotopic records from the tropical western Pacific. In: Clift, P., Wang, P., Kuhnt, W., etal., eds., Continent-ocean interac-tions within East Asian marginal seas. Geophysical Monograph, 149: 321-337.
      Imbrie, J., Boyle, E., Clemens, S., et al., 1992. On the struc-ture and origin of major glaciation cycles. 1. Linear re-sponses to Milankovitch forcing. Paleoceanography, 7: 701-738.
      Imbrie, J., Imbrie, K. P., 1979. Ice ages: Solving the mystery. Harvard University Press, MA.
      Imbrie, J., Berger, A., Boyle, E., et al., 1993. On the struc-ture and origin of major glaciation cycles. 2. TThe 100000-year cycle. Paleoceanography, 8: 699-735.
      Imbrie, J., Hays, J. D., Martinson, D. G., et al., 1984. The orbital theory of Pleistocene climate: Support from a re-vised chronology of the marine δ18O record. In: Berger, A., Imbrie, J., Hays, J. D., et al., eds., Milankovitch and climate. Part1. Reidel Publishing Co., Dordrecht, 269-305.
      Krijgsman, W., Hilgen, F. J., Raffi, I., et al., 1999. Chronol-ogy, causes and progression of the Messinian salinity crisis. Nature, 400: 652-655. doi: 10.1038/23231
      Laskar, J., Robutel, P., Joutel, F., et al., 2004. A long term numerical solution for the insolation quantities of the earth. Astron. Astrophys., 428: 261-285. doi: 10.1051/0004-6361:20041335
      Lourens, L. J., Wehausen, R., Brumsack, H. J., 2001. Geo-logical constraints on tidal dissipation and dynamical el-lipticity of the earth over the past three million years. Nature, 409: 1029-1033. doi: 10.1038/35059062
      Lourens, L. J., Hilgen, F. J., Shackleton, N. J., et al., 2005. The Neogene period. In: Gradstein, F., Ogg, J., Smith, A., eds., A geologic time scale 2004. Cambridge University Press, London.
      Paul, H. A., Zachos, J. C., Flower, B. P., et al., 2000. Orbit-ally induced climate and geochemical variability across the Oligocene/Miocene boundary. Paleoceanography, 15: 471-485. doi: 10.1029/1999PA000443
      Rutherford, S., DHondt, S., 2000. Early onset and tropical forcing of 100000-year Pleistocene glacial cycles. Nature, 408: 72-75.
      Shackleton, N. J., 2000. The 100000-year ice-age cycle iden-tified and found to lag temperature, carbon dioxide and orbital eccentricity. Science, 289: 1897-1902. doi: 10.1126/science.289.5486.1897
      Shevenell, A. E., Kennett, J. P., Lea, D. W., 2004. Middle Miocene Southern Ocean cooling and Antarctic cryo-sphere expansion. Science, 305: 1766-1770. doi: 10.1126/science.1100061
      Sierro, F. J., Flores, J. A., Zamarreno, I., et al., 1999. Messinian pre-evaporite sapropels and precession-induced oscillation in western Mediterranean climate. Mar. Geol., 153: 137-146. doi: 10.1016/S0025-3227(98)00085-1
      Tian, J., Wang, P. X., Cheng, X. R., 2004. Responses of fo-raminiferal isotopic variations at ODP Site 1143 in the southern South China Sea to orbital forcing. Science in China (Ser. D), 47 (10): 943-953.
      Tiedemann, R., Sarnthein, M., Shackleton, N. J., 1994. As-tronomic timescale for the Pliocene Atlantic δ18O and dust flux records from Ocean Drilling Program Site 659. Paleoceanography, 9: 619-638. doi: 10.1029/94PA00208
      VanVugt, N., Langereis, C. G., Hilgen, F. J., 2001. Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits; dominant expression of eccentricity versus precession. Palaeogeogr., Palaeoclimatol., Palaeo-ecol., 172: 193-205. doi: 10.1016/S0031-0182(01)00270-X
      Wade, B. S., Pälike, H., 2004. Oligocene climate dynamics. Paleoceanography, 19: PA4019. doi: 10.1029/2004PA001042.
      Wang, P. X., Tian, J., Cheng, X. R., et al., 2003. Exploring cyclic changes of the ocean carbon reservoir. Chinese Sci. Bull., 48 (23): 2536-2548 (in Chinese). doi: 10.1360/03wd0155
      Zachos, J. C., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693. doi: 10.1126/science.1059412
      田军, 汪品先, 成鑫荣, 2004. 南沙ODP1143站有孔虫同位素变化对地球轨道驱动的响应. 中国科学(D辑), 34 (5): 452-460. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200405007.htm
      汪品先, 田军, 成鑫荣, 等, 2003. 探索大洋碳储库的演变周期. 科学通报, 48 (23): 2536-2548. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200321003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (4757) PDF downloads(46) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return