• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 30 Issue 3
    May  2005
    Turn off MathJax
    Article Contents
    ZHANG Hong-fei, Nigel Harris, Randall Parrish, ZHANG Li, ZHAO Zhi-dan, LI De-wei, 2005. Geochemistry of North Himalayan Leucogranites: Regional Comparison, Petrogenesis and Tectonic Implications. Earth Science, 30(3): 275-288.
    Citation: ZHANG Hong-fei, Nigel Harris, Randall Parrish, ZHANG Li, ZHAO Zhi-dan, LI De-wei, 2005. Geochemistry of North Himalayan Leucogranites: Regional Comparison, Petrogenesis and Tectonic Implications. Earth Science, 30(3): 275-288.

    Geochemistry of North Himalayan Leucogranites: Regional Comparison, Petrogenesis and Tectonic Implications

    • Received Date: 2005-01-21
    • Publish Date: 2005-05-25
    • The North Himalayan antiform is exposed a series of gneiss domes, intruded by the North Himalayan leucogranites(NHL)with magma emplacement ages from 27.5 to 10 Ma. The NHL are dominated by two-mica granites. They have SiO2=70.97%-74.54%, K2O+ Na2O=6.27%-8.09%, K2O/Na2O=0.91-1.36 and A/CNK=1.10-1.33. However, they display wide variations of trace element composition with Rb=(41-322)×10-6, Sr=(26-139)×10-6, Ba= (135-594)×10-6, (La/Yb)N=0.97-17.31, Eu/Eu* =0.29-0.72. Each body reveals distinct inter-granite trace element characteristics suggesting that each body results from distinctive conditions. The granites from the NHL resemble the two-mica granites from the High Himalayan leucogranites(HHL), but are distinct from tourmaline-muscovite granites from the HHL in their Ti, Mg, Ca, Ba contents and Rb/Sr ratio. The NHL have(87Sr/86Sr)t=0.734 4-0.850 3(for t=10 Ma) and εNd(10 Ma)=-12.5 to-19.3, which are indistinguishable from the HHL. Both the NHL and the HHL were derived from the anatexis of the High Himalayan Crystalline Series(HHCS)under the condition of fluid-absent melting, induced by muscovite breakdown due to decompression. The magma emplacement ages and the geological setting of the NHL are quite distinct from those of the HHL. Whilst the HHL resulted from southwards extrusion of the tectonic wedge of the HHCS during the Miocene, the NHL appear to have been generated over a much longer timespan, involving early melting during crustal thickening and subsequent melting during the exhumation of the gneiss domes. Thus the NHL and the HHL have different tectonic implications.

       

    • loading
    • Ahmad, T., Harris, N., Bickle, M., et al., 2000. Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geol. Soc. Am. Bull. , 112: 467-477. doi: 10.1130/0016-7606(2000)112<467:ICOTSR>2.0.CO;2
      Ayres, M., Harris, N., 1997. REE fractionation and Nd-iso-tope disequiblibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chemical Geology, 139: 249-269. doi: 10.1016/S0009-2541(97)00038-7
      Ayres, M., Harris, N., Vance, D., 1997. Possible constraints on anatectic melt residence times from accessory mineral dissolution rate: An example from Himalayan leucogranites. Mineralogical Magazine, 61: 29-36. doi: 10.1180/minmag.1997.061.404.04
      Barbey, P., Alle, P., Brouand, M., et al., 1995. Rear-earth patterns in zircons from the Manaslu granite and Tibetan slab migmatites(Himalaya): Insights in the origin and evolution of a crustally-derived granite magma. Chemical Geology, 125: 1-17. doi: 10.1016/0009-2541(95)00068-W
      Castelli, D., Lombardo, B., 1988. The Gophu La and western Lunana granites: Miocene muscovite leucogranites of the Bhutan Himalaya. Lithos, 21: 211-225. doi: 10.1016/0024-4937(88)90010-2
      Copeland, P., Harrison, T.M., Le Fort, P., 1990. Age and cooling history of the Manaslu granite: Implication for Himalayan tectonics. Journal Volcanol Geotherm Res., 44: 33-50. doi: 10.1016/0377-0273(90)90010-D
      Debon, F., Le Fort, P., Sheppard, S.M.F., et al., 1986. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section. Journal of Petrology, 27: 281-302.
      Deniel, C.G., Hollister, L.S., Parrish, R.R., et al., 2003. Exhumation of the main central thrust from lower crustal depths, eastern Bhutan Himalaya. J. Metamorphic Geol. , 21: 317-334. doi: 10.1046/j.1525-1314.2003.00445.x
      Deniel, C., Vidal, P., Fernandez, A., et al., 1987. Isotopic study of the Manaslu granite(Himalaya, Nepal): Inferences of the age and source of Himalayan leucogranites. Contrib. Mineral. Petrol. , 96: 78-92. doi: 10.1007/BF00375529
      Deniel, C., Vidal, P., Le Fort, P., 1986. Les leucogranites himalayens et leur région source probable: les gneiss de la "Dalle du Tibet". CR. Acad. Sci. Paris, 303: 57-62.
      Deway, J.F., Cande, S., Pitman, W.C., 1989. Tectonic evolution of the Indian/Eurasia collision zone. Eclogae geologicae Helvetiae, 82: 717-734.
      Edwards, M.A., Harrison, T.M., 1997. When did the roof collapse? Late Miocene N-S extension in the High Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology, 25: 543-546.
      England, P., Le Fort, P., Molnar, P., et al., 1992. Heat sources for Tertiary magmatism and anatexis in the Annapurna-Manaslu region of central Nepal. J. Geophys. Res. , 97: 2107-2128. doi: 10.1029/91JB02272
      Ferrara, G., Lombardo, B., Tonarini, S., 1983. Rb/Sr geochronology of granites and gneisses from the Mount Everest region, Nepal Himalaya. Geo. Rundschau, 72: 119-136. doi: 10.1007/BF01765903
      Ferrara, G., Lombardo, B., Tonarini, S., 1991. Sr, Nd and O isotopic characterization of the Gophu La and Gumburanjun leucogranites(High Himalaya). Schweiz Mineral Petrogr Mitt, 71: 35-51.
      Guillot, S., Le Fort, P., 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranite. Lithos, 35: 221-234. doi: 10.1016/0024-4937(94)00052-4
      Harris, N., Ayres, M., Massey, J., 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: Implication for the extraction of Himalayan leucogranite mamas. Journal of Geophysical Research, 100: 15767-15777. doi: 10.1029/94JB02623
      Harris, N., Inger, S., 1992. Trace element modeling of pelite-de-rived granites. Contrib. Mineral. Petrol. , 110: 46-56. doi: 10.1007/BF00310881
      Harris, N., Massey, J., 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13: 1537-1546. doi: 10.1029/94TC01611
      Harrison, T.M., Grove, M., Lovera, O.M., et al., 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. J. Geophys. Res. , 103: 27017-27032. doi: 10.1029/98JB02468
      Harrison, T.M., Grove, M., McKeegan, K.D., et al., 1999. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. Journal of Petrology, 40: 3-19. doi: 10.1093/petroj/40.1.3
      Harrison, T.M., Lovera, O.M., Grove, M., 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25: 899-902.
      Harrison, T.M., Watson, E.B., 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib. Mineral. Petrol. , 84: 66-72. doi: 10.1007/BF01132331
      Hodges, K.V., 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112: 324-350. doi: 10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2
      Hodges, K.V., Bowring, S., Davidek, K., et al., 1998. Evidence for rapid displace on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 26: 483-486.
      Inger, S., Harris, N., 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34: 345 -368. doi: 10.1093/petrology/34.2.345
      Koester, E., Pawley, A.R., Luís, A.D., et al., 2002. Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in Southern Brazil. Journal of Petrology, 43: 1595-1616. doi: 10.1093/petrology/43.8.1595
      Le Breton, N., Thompson, A.B., 1998. Fluid-absent(dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib. Mineral. Petrol, 99: 226-237.
      Le Fort, P., 1975. Himalayas: The collided range. Present knowledge of the continetal arc. Am. J. Sci. , 275A: 1-44.
      Le Fort,P.,1986.Metamorphism and magmatism during the Himalayan collision.In:Collision Tectonics,MP Coward,AC Ries.Geol.Soc.Spec.Publ.,19:159-172.
      Lee, J., Hacker, B.R., Dinklage, W.S., et al., 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19: 872-895. doi: 10.1029/1999TC001147
      Massey, J.A., 1994. Metamorphism, melting and fluid during Himalayan orogenesis: [Ph. D. thesis]. Open University, U.K. .
      Miller, C., Thöni, M., Frank, W., et al., 2001. The early Palaeozoic magmatic event in the NW Himalaya, India: Source, tectonic setting and age of emplacement. Geology Magazine, 138: 237-251. doi: 10.1017/S0016756801005283
      Montel, J.M., 1993. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110: 127-146. doi: 10.1016/0009-2541(93)90250-M
      Patino-Douce, A. E., Harris, N., 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39: 689-710. doi: 10.1093/petroj/39.4.689
      Rapp, R. P., Watson, E. B., 1986. Monazite solubility and dissolution kinetics: Implications for the thorium and light rare earth chemistry of felsic magmas. Contrib. Mineral. Petrol. , 94: 304-316. doi: 10.1007/BF00371439
      Scaillet, B., France-Lanord, C., Le Fort, P., 1990. BadrinathGangotri plutons(Garhwal, India): Petrological and geochemical evidence for fractionation processes in a High Himalaya leucogranite. J. Vocanol. Geotherm. Res. , 44: 163-168. doi: 10.1016/0377-0273(90)90017-A
      Schärer, U., Xu, R. H., Allegére, C. J., 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet. Earth Planet. Sci. Lett. , 77: 35-48. doi: 10.1016/0012-821X(86)90130-5
      Searle, M.P., Parrish, R.R., Hodges, K.V., et al., 1997. Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin and emplacement. The Journal of Geology, 105: 295-317. doi: 10.1086/515924
      Searle, M.P., Simpson, R.L., Law, R.D., et al., 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal. J. Geol. Soc. Lond. , 160: 345-366. doi: 10.1144/0016-764902-126
      Simpson, R.L., Parrish, R.R., Searle, M.P., et al., 2000. Two episodes of monazite crystallisation during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya. Geology, 28: 403-406.
      Stephenson, B.J., Searle, M.P., Waters, D.J., et al., 2001. Structure of the main central thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar-Zanskar Himalaya. Journal of the Geological Society, London, 158: 637-652. doi: 10.1144/jgs.158.4.637
      Stern, C. R., Kligfield, R., Schelling, D., 1989. The Bhagirathi leucogranite of the High Himalaya(Garhwal, India: Age, petrogenesis, and tectonic implications. Geo. Soc. Am. Spec. , 232: 33-45.
      Taylor, S. R., McLennan, S. M., 1995. The continental crust: Its composition and evolution. Blackwell Scientific Publication, Oxford, 1-132.
      Vidal, P., Bernard-Griffiths, J., Cocherie, A., et al., 1984. Geochemical comparison between Himalayan and Hercynian leucogranites. Phys. Earth Planet. Int. , 35: 179-190. doi: 10.1016/0031-9201(84)90041-4
      Vielzeuf, D., Holloway, J.R., 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol. , 98: 257-276. doi: 10.1007/BF00375178
      Vielzeuf, D., Schmidt, N.W., 2001. Melting relations in hy- drous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contrib. Mineral. Petrol. , 141: 251-267. doi: 10.1007/s004100100237
      Visona, D., Lombardo, B., 2002. Two-mica and tourmaline leucogranites from the Everest-Makalu region(NepalTibet): Himalayan leucogranite genesis by isobaric heating? Lithos, 62: 125-150. doi: 10.1016/S0024-4937(02)00112-3
      Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. , 64: 295-304. doi: 10.1016/0012-821X(83)90211-X
      Wu, C., Nelson, K.D., Wartman, G., et al., 1998. Yadong cross structure and South Tibetan Detachment in eastcentral Himalaya(89°-90°E). Tectonics, 17: 28-45. doi: 10.1029/97TC03386
      Xu, R.H., 1990. Age and geochemistry of granites and metamorphic rocks in south-central Xizang(Tibet). In: Chinese Academy of Geological Sciences, ed., Igneous and metamorphic rocks of the Tibetan plateau. Geological Publishing House, Beijing, 287-302.
      Yin, A., Harrison, T. M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. , 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
      Zhang, H. F., Harris, N., Parrish, R., et al., 2004. U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications. Chinese Science Bulletin, 49: 2087-2092. doi: 10.1360/04wd0198
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (4484) PDF downloads(19) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return