• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 30 Issue 2
    Mar.  2005
    Turn off MathJax
    Article Contents
    JU Jin-rong, HU Ming-an, CHEN Jing-zhong, HAN Wei, 2005. Nanoparticle Size and Melting Point Relationship. Earth Science, 30(2): 195-198.
    Citation: JU Jin-rong, HU Ming-an, CHEN Jing-zhong, HAN Wei, 2005. Nanoparticle Size and Melting Point Relationship. Earth Science, 30(2): 195-198.

    Nanoparticle Size and Melting Point Relationship

    • Received Date: 2004-07-15
    • Publish Date: 2005-03-25
    • To deduce the quantitative relationship between the melting point of nanoparticles and their radius, and set forth the sintering processes of nano-systems and the qualitative relation between the sintering temperature and the radius of nanoparticles from a thermodynamics angle, the phase transition process between solid and liquid states has been proposed, and thermodynamics and surface chemistry theories and phase equilibrium conditions were used. The relationship was applicable to lead (Pb). The results show that owing to its small size and high special surface free energy, the chemical potential of a material in the form of nanoparticles was much higher than that of the bulk. As a result, the melting point of nanoparticles was depressed in comparison to that of the bulk crystals. The calculated results for met al lead were coincident with the experimental ones. So there is a relationship between the melting point and the sintering temperature of a nanoparticle and its radius. The smaller the nanoparticle radius, the lower the melting point and sintering temperature.

       

    • loading
    • [1]
      Chen, D., 1994. Study of the structural model and properties of nanocrystal. Acta Met allurgica Sinica, 30 (8): 348-354 (in Chinese with English abstract).
      [2]
      Chen, J. Z., 1994. The development of nano-technology and the study of nano-mineralogy. Geological Science and Technology Information, 13: 32-35 (in Chinese with English abstract).
      [3]
      Huang, X. R., 2001. Sintering of macrofiltration membrane of alumina with nanometer aluminum hydroxide additive. New Technology and New Process, 10: 35-36 (in Chinese with English abstract).
      [4]
      Jiang, Z. D., Fan, X. J., 1994. Principles and applications of colloid and surface chemistry. Hubei Science and Technology Press, Wuhan, 58-63 (in Chinese).
      [5]
      Liu, H. B., Ascencio, J. A., Perez-Alvarez, M., et al., 2001. Melting behavior of nanometer sized gold isomers. Surface Science, 491: 88-98. doi: 10.1016/S0039-6028(01)01351-6
      [6]
      Lu, K., Jin, Z. H., 2001. Melting and superheating of low-dimensional materials. Current Opinion in Solid State and Materials Science, 5: 39-44. doi: 10.1016/S1359-0286(00)00027-9
      [7]
      Ryu, S. S., Kim, Y. D., Moon, I. H., 2002. Diatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying. Journal of Alloys and Compounds, 335: 233-240. doi: 10.1016/S0925-8388(01)01805-9
      [8]
      Semenchenko, V. K., 1961. Surface phenomena in metals and alloys. Pergamon, Oxford, 281.
      [9]
      Sheng, H. W., Hu, Z. Q., Lu, K., 1997. Melting and freezing behaviors of Pb nanoparticles embedded in an Almatrix. Nano Structured Materials, 9: 661-664. doi: 10.1016/S0965-9773(97)00145-1
      [10]
      Yin, B. Y., 2001. Nano-times—Reality and dream. Chinese Light Industry Press, Beijing (in Chinese).
      [11]
      Yin, Y. J., 1988. Hands of physical chemistry. High Educational Press, Beijing (in Chinese).
      [12]
      Zeng, P., Zajac, S., Clapp, P. C., et al., 1998. Nanoparticles sintering simulations. Materials Science and Engineering, A252: 301-306.
      [13]
      Zhang, L. D., 2001. The preparation and the applied technology of ultrafined powders. Chinese Petrochemistry Press, Beijing (in Chinese with English abstract).
      [14]
      Zhang, L. D., Mu, J. M., 2001. Nanometer materials and nan-ometer structure. Science Press, Beijing (in Chinese with English abstract).
      [15]
      陈达, 1994. 纳米晶体的结构模型及性质研究. 金属学报, 30 (8): 348-354. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB408.002.htm
      [16]
      陈敬中, 1994. 纳米科技发展与纳米矿物学研究. 地质科技情报, 13: 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.007.htm
      [17]
      黄肖容, 2001. 纳米氢氧化铝对微滤氧化铝膜烧结的影响. 新技术新工艺, 10: 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200110016.htm
      [18]
      蒋子铎, 樊西惊, 1994. 胶体与界面化学原理及其应用. 武汉: 湖北科学技术出版社, 58-63.
      [19]
      尹帮跃, 2001. 纳米时代——现实与梦想. 北京: 中国轻工业出版社.
      [20]
      印永嘉, 1988. 物理化学简明手册. 北京: 高等教育出版社.
      [21]
      张立德, 2001. 超微粉体制备与应用技术. 北京: 中国石化出版社.
      [22]
      张立德, 牟季美, 2001. 纳米材料和纳米结构. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)  / Tables(1)

      Article views (6182) PDF downloads(95) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return