• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 30 Issue 2
    Mar.  2005
    Turn off MathJax
    Article Contents
    SUN Hua-shan, ZHAO Peng-da, ZHANG Shou-ting, XIA Qing-lin, 2005. Theory and Practice of Systematic Mineral Exploration Based on 5P Met allogenic Prognosis and Quantitative Assessment. Earth Science, 30(2): 199-205.
    Citation: SUN Hua-shan, ZHAO Peng-da, ZHANG Shou-ting, XIA Qing-lin, 2005. Theory and Practice of Systematic Mineral Exploration Based on 5P Met allogenic Prognosis and Quantitative Assessment. Earth Science, 30(2): 199-205.

    Theory and Practice of Systematic Mineral Exploration Based on 5P Met allogenic Prognosis and Quantitative Assessment

    • Received Date: 2004-09-16
    • Publish Date: 2005-03-25
    • Research on earth system science has led to the production of computer-based, mathematical systematic exploration. Systematic mineral exploration is a process in which various ore-controlling factors and ore-finding signs are extensively considered, reasonably selected and arranged in order. In addition, the establishment of a mathematical model for systematic exploration meets the need of information development. The 5P met allogenic prognosis system is a better embodiment of systematic exploration. It divides mineral exploration into five different stages, with each obtaining different explored areas. 5P includes: stage 1, probable ore-forming area; stage 2, permissable ore-finding area; stage 3, preferable ore-finding area; stage 4, potential mineral resources; and stage 5, prospective ore body area. Different areas can be delineated through different mathematical models. Based on a full analysis of the previous mathematical models for mineral exploration, this paper points out that the impact of superior ore-controlling factors on subordinate ones is ignored. Thus, the links between the superior and the subordinate are cut off and this violates an integral principle of systematic exploration. In fact, superior ore-controlling factors not only influence the subordinate ones, but also exert influence on the subordinate exploration objects. A formula is presented herein for calculating the weight of the superior over the subordinate, which improves the ore-forming favorability function for delineating different ore-finding areas. A case in Himalayan granitoid rich-alkali porphyry in southern Sanjiang region, northwest Yunnan Province, provides an example for the construction of a systematic exploration model based on the 5P met allogenic prognosis system. A quantitative assessment on the Cu-Mo-Au preferable ore-finding area (the third "P") is conducted. The results show that the consistency between delineating areas and Cu-Mo-Au forming sections is relatively high, indicating the feasibility of the method suggested.

       

    • loading
    • [1]
      Cen, B. X., Xiong, P. F., Wang, D. Y., 1991. Theory and method of mineral system exploration. Earth Science—Journal of China University of Geosciences, 16 (4): 411-417 (in Chinese with English abstract).
      [2]
      Sun, H. S., 2004. Analysis of diversity of mineral ization and quantitative resources assessments to regional advantage mineral resources—Case of alkali-rich porphyry in xi-shan period in the northwest of Yunnan Province (Dissertation). China University of Geosciences, Wuhan, China (in Chinese with English abstract).
      [3]
      Sun, H. S., Zhao, P. D., Zhang, S. T., et al., 2004. Application of system structural model for mineral resources prospecting. Earth Science Frontiers, 11 (1): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401042.htm
      [4]
      Wang, S. Y., Liu, G. H., 2002. System analysis. Publishing House of Zhe jiang University, Hangzhou (in Chinese).
      [5]
      Zhao, P. D., Chi, S. D., Chen, Y. Q., 1996. A thorough investigation of geo-anomaly: A basis of met allogenic prognosis. Geological Journal of China Universities, 2 (4): 361-373 (in Chinese with English abstract).
      [6]
      Zhao, P. D., Chen, Y. Q., 1998. The main way of geo-anomaly location of ore body. Earth Science—Journal of China University of Geosciences, 23 (2): 111-114 (in Chinese with English abstract).
      [7]
      Zhao, P. D., Chen, Y. Q., 1999. Geological anomaly unit-based delineation and assessment of preferable gold ore-finding area. Earth Science—Journal of China University of Geosciences, 24 (5): 443-448 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199905000.htm
      [8]
      Zhao, P. D., Hu, W. L., Li, Z. J., 1983. Statistic prediction of mineral deposit. Beijing: Geological Publishing House, Beijing, 52-53 (in Chinese).
      [9]
      岑博雄, 熊鹏飞, 王定域, 1991. 矿产系统勘查的理论及其方法. 地球科学——中国地质大学学报, 16 (4): 411-417.
      [10]
      孙华山, 2004. 成矿多样性分析与区域优势矿产资源定量评价——以滇西北喜山期富碱斑岩相关矿产研究为例(博士论文). 武汉: 中国地质大学.
      [11]
      孙华山, 赵鹏大, 张寿庭, 等, 2004. 系统结构模型在矿产勘查中的应用. 地学前缘, 11 (1): 305-310. doi: 10.3321/j.issn:1005-2321.2004.01.028
      [12]
      汪树玉, 刘国华, 2002. 系统分析. 杭州: 浙江大学出版社.
      [13]
      赵鹏大, 陈永清, 1998. 地质异常矿体定位的基本途径. 地球科学——中国地质大学学报, 23 (2): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX802.000.htm
      [14]
      赵鹏大, 陈永清, 1999. 基于地质异常单元金矿找矿有利地段圈定与评价. 地球科学——中国地质大学学报, 24 (5): 443-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199905000.htm
      [15]
      赵鹏大, 池顺都, 陈永清, 1996. 查明地质异常: 成矿预测的基础. 高校地质学报, 2 (4): 361-373. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX604.000.htm
      [16]
      赵鹏大, 胡旺亮, 李紫金, 1983. 矿床统计预测. 北京: 地质出版社, 52-53.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)  / Tables(7)

      Article views (3686) PDF downloads(17) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return