• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 30 Issue 1
    Jan.  2005
    Turn off MathJax
    Article Contents
    YIN Xiu-lan, MA Yin-sheng, FENG Xiang-yang, LI Si-tian, 2005. Thermal Stresses and Their Effects during the Deep Hot Fluids Penetrating upward in DF 1-1 Diapiric Area, Yinggehai Basin. Earth Science, 30(1): 83-88.
    Citation: YIN Xiu-lan, MA Yin-sheng, FENG Xiang-yang, LI Si-tian, 2005. Thermal Stresses and Their Effects during the Deep Hot Fluids Penetrating upward in DF 1-1 Diapiric Area, Yinggehai Basin. Earth Science, 30(1): 83-88.

    Thermal Stresses and Their Effects during the Deep Hot Fluids Penetrating upward in DF 1-1 Diapiric Area, Yinggehai Basin

    • Received Date: 2004-06-22
    • Publish Date: 2005-01-25
    • The hot fluids are intensive and frequent in the DF1-1 diapiric area, Yinggehai basin, South China Sea. Thermal fluids penetrating the strata from the deep belt generated thermal stress, which resulted in changes to the local stress field. Moving thermal fluids are capable of transporting a large amount of heat from the deep part of the basin, resulting in thermal anomalies, which heat and expand adjacent sediments to form local thermal stress. Thermal stresses controlled the stress patterns and direction of overpressure fluid migration in some locations. The structural stress associated with thermal stress induced the fluid migration system including fractures, faults and sand folds. On the other hand, because the fluids have had thermal energy and hydrocarbon or CO2 when penetrating strata from the deep, the obvious temperature differentia caused abnormal phenomena in a series of geochemical parameters, including transferring from smectite to illite, vitrinite reflectance rate, the temperature of fluid inclusions etc.. All those processes mean that the characteristics of the diapiric body and its surrounding rock are extremely different before diapirism and after diapirism. This research also demonstrates and analyzes the evolutional process of the thermal stress field and temperature field by comparing a quantitative dynamic simulation with field analysis. The results show that stress fields and temperature fields moved upwards over time. The thermal stress field also promoted the episodic opening of faults, and accelerated the hydrocarbon-bearing fluid flow upwards. The extent of the effect of thermal fluids depends on the proportion between thermal stress and tectonic stress.

       

    • loading
    • Bjorlykke, K., 1994. Fluid-flow processes and diagenesis in sedimentary basins. In: Parnell, J., ed., Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication, 78: 127-140.
      Collett, T. S., 2002. Energy resource potential of natural gas hydrates. AAPG Bulletin, 86(11): 1971-1992
      Cosgrove, J. W., 2001. Hydraulic fracturing during the formation and deformation of a basin: A factor in the dewatering of low-permeability sediments. AAPG Bulletin, 85(4): 737-748.
      Dong, W. L., Huang, B. J., 1999. Heterogeneity of natural gases and the episodic charging process: A case study for Dongfang 1-1 gas field, Yinggehai basin. Petroleum Exploration and Development, 26(15): 15-18 (in Chinese with English abstract).
      Gao, B., Tao, M. X., Wang, W. C., 2001. Influences of deeply sourced thermal fluid on the formation of hydrocarbon reservoirs. Bulletin of Mineralogy, Petrology and Geochemisty, 20(1): 30-34 (in Chinese with English abstract).
      Gibson, R. G., Bentham, P. A., 2003. Use of fault-seal analysis in understanding petroleum migration in a complexly faulted anticlinal trap, Columbus basin, offshore Trinidad. AAPG Bulletin, 87(3): 465-478. doi: 10.1306/08010201132
      Hao, F., Li, S. T., Gong, Z. S., et al., 2001. The mechanism of diapirs developing and episodic expulsing in Yinggehai basin. Science in China (Series D), 31(6): 471-476 (in Chinese).
      Huang, B. J., Xiao, X. M., Dong, W. L., 2002. Source rocks and generation & evolution model of natural gas in Yinggehai basin. Natural Gas Industry, 22(1): 26-30(in Chinese with English abstract).
      Huang, C. J., Chen, K. Y., Li, S. T., 2002. Periodicities of diapiric rise in the Yinggehai basin. Petroleum Exploration and Development, 29(4): 44-46 (in Chinese with English abstract).
      Larue, D. K., Legarre, H., 2004. Flow units, conductivity, and reservoir characterization in a wave-dominated deltaic reservoir: Meren reservoir, Nigeria. AAPG Bulletin, 88(3): 303-324. doi: 10.1306/10100303043
      Lawrence, S. R., Cornford, C., 1995. Basin geofluids. Basin Research, 57: 1-7.
      Li, S. T., 1992. To get the giant achievements in oil/gas field-The synopsis of the history in researching active hot fluid. China Of fshore Oil and Gas (Geology), 6(6): 69-70(in Chinese with English abstract).
      Makhous, M., Galushkin, Y. I., 2003. Burial history and thermal evolution of the northern and eastern Saharan basins. AAPG Bulletin, 87(10): 1623-1652. doi: 10.1306/04300301122
      Nordgard, B. H. M., Hermanrud, C., Teige, G. M. G., 2004. Origin of overpressures in shales: Constraints from basin modeling. AAPG Bulletin, 88(2): 193-212. doi: 10.1306/10060302042
      Sibson, R. H., 2003. Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bulletin, 87(6): 901-908. doi: 10.1306/01290300181
      Xie, X. N., Li, S. T., Dong, W. L., et al., 1999. Trace marker of hot fluid flow and their geological implications-A case study of Yinggehai basin. Earth Science-Journal of China University of Geosciences, 24(2): 183-188 (in Chinese with English abstract).
      Yin, X. L., Li, S. T., Yang, J. H., 2003. Study on the digital simulation of structural stress field and flow field in DF1-1 diapir. Earth Science-Journal of China University of Geosciences, 28(3): 268-274 (in Chinese with English abstract).
      Zhang, M. Q., 2000. Migration accumulation characteristics of natural gas in the diapir structure belt of Yinggehai basin. Journal of University of Petroleum, 24(4): 39-42 (in Chinese with English abstract).
      Zhang, Q. M., Liu, F. N., Yang, J. H., 1996. Overpressure system and oil/gas accumulation. China Offshore Oil and Gas (Geology), 10(2): 65-75 (in Chinese with English abstract).
      董伟良, 黄保家, 1999. 东方1-1气田天然气组成的不均一性与幕式充注. 石油勘探与开发, 26 (15): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK902.004.htm
      高波, 陶明信, 王万春, 2001. 深部热流体对油气成藏的影响. 矿物岩石地球化学通报, 20 (1): 30-34. doi: 10.3969/j.issn.1007-2802.2001.01.007
      郝芳, 李思田, 龚再升, 等, 2001. 莺歌海盆地底辟发育机理与流体幕式充注. 中国科学(D辑), 31 (6): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200106004.htm
      黄保家, 肖贤明, 董伟良, 2002. 莺歌海盆地烃源岩特征及天然气生成演化模式. 天然气工业, 22 (1): 26-30. doi: 10.3321/j.issn:1000-0976.2002.01.007
      黄春菊, 陈开远, 李思田, 2002. 莺歌海盆地泥底辟活动期次分析. 石油勘探与开发, 29 (4): 44-46. doi: 10.3321/j.issn:1000-0747.2002.04.013
      李思田, 1992. 为实现油气领域的重大突破———活动热流体的历史研究简介. 中国海上油气(地质), 6 (6): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199206019.htm
      解习农, 李思田, 董伟良, 等, 1999. 热流体活动示踪标志及其地质意义———以莺歌海盆地为例. 地球科学———中国地质大学学报, 24 (2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.016.htm
      殷秀兰, 李思田, 杨计海, 2003. DF1-1底辟区构造应力场及渗流场演化的数值模拟研究. 地球科学———中国地质大学学报, 28 (3): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200303005.htm
      张敏强, 2000. 莺歌海盆地底辟构造带天然气运聚特征. 石油大学学报, 24 (4): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200004009.htm
      张启明, 刘福宁, 杨计海, 1996. 莺歌海盆地超压体系与油气聚集. 中国海上油气(地质), 10 (2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199602000.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (3810) PDF downloads(44) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return