• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 29 Issue 6
    Jun.  2004
    Turn off MathJax
    Article Contents
    YANG Jing-sui, BAI Wen-ji, FANG Qing-song, YAN Bing-gang, RONG He, CHEN Song-yong, 2004. Coesite Discovered from the Podiform Chromitite in the Luobusha Ophiolite, Tibet. Earth Science, 29(6): 651-660.
    Citation: YANG Jing-sui, BAI Wen-ji, FANG Qing-song, YAN Bing-gang, RONG He, CHEN Song-yong, 2004. Coesite Discovered from the Podiform Chromitite in the Luobusha Ophiolite, Tibet. Earth Science, 29(6): 651-660.

    Coesite Discovered from the Podiform Chromitite in the Luobusha Ophiolite, Tibet

    • Received Date: 2004-09-07
    • Publish Date: 2004-11-25
    • Coesite and kyanite are new discovery from the podiform chromitite in the Luobusha ophiolite, which is located (about) 200 km southeast of Lhasa, Tibet, and marks the locus of collision between the Indian and Eurasian plates. Coesite-kyanite crystals are acicular and individuals are about (20-40) μm× (4-6) μm in size, forming a 30-50 μm wide rim (around) a 0.7 mm×0.5 mm TiFe alloy. Besides the coesite-kyanite rim, the TiFe alloy core is surrounded by a TiSi outer zone of about 10 μm width, and a native Ti inner zone of about 20-70 μm width. Ti-Mg-K-Na-Ca oxide crystals and Si-(rutile) occur as interstitial materials within the framework formed by coesite and kyanite. Within the TiFe alloy core are some small grains of native Ti and relatively low-Ti TiFe alloy, constituting a myrmekitic texture. The amount of Si, Al and O shows a decreasing trend from rim to core, which suggests that a chemical reaction occurred at the rim of the TiFe alloy. During this reaction new minerals formed with a symplektic texture. The regular variation from native Ti through TiSi to coesite-kyanite and oxide aggregates suggests that the series of minerals were formed by a reaction between native Ti and some silicates, under high pressure and temperature. This reaction probably occurred during the upwelling of a plume which carried TiFe alloy and other minerals from the deep mantle, suggesting that the Luobusha coesite formed during a decrease in pressure, which is in contrast with the coesite formed by increasing pressure in a convergent margin.

       

    • loading
    • Bai, W.J., Fang, Q.S., Zhang, Z.M., et al., 2001a. Crystal structure of forstertite from podiform chromitite in Luobusha ophiolite of Tibet and its implications. Acta Petrol. Mineral. , 20(1): 1-9(in Chinese with English abstract).
      Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2001b. Study on a storehouse of ultrahigh pressure mantle minerals—podiform chromite deposits. Earth Sci. Front. , 8(3): 111-121(in Chinese with English abstract).
      Bai, W.J., Zhou, M.F., Fang, Q.S., 2000. Origin of podiform chromitites, diamonds and associated mineral assemblage in the Luobusha ophiolite, Tibet. Seismological Press, Beijing, 1-98(in Chinese).
      Bai, W.J., Zhou, M.F., Robinson, P.T., et al., 1993. Possible diamond-bearing mantle peridotites and chromites in the Luobusha and Dongqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30: 1650-1659. doi: 10.1139/e93-143
      Belousova, E.A., Griffin, W.L., Pearson, N.J., 1988. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral. Mag. , 62 (3): 355-366. https://www.researchgate.net/publication/233659847_Trace_element_composition_and_cathodoluminescence_properties_of_southern_African_kimberlitic_zircons
      Cao, E.T.C., Shoemaker, E.M., Madsen, B.M., 1960. First natural occurrence of coesite. Science, 132: 220-221. doi: 10.1126/science.132.3421.220
      Chopin, C., 1984. Coesite and pure pyrope in high-grade bluschists of the western Alps: A first record and some consequences. Contrib. Mineral. Petrol. , 86: 107-110. doi: 10.1007/BF00381838
      Cong, B.L., 1995. Ultrahigh pressure metamorphic rocks in China. Episodes, 18: 91-94. doi: 10.18814/epiiugs/1995/v18i1.2/020
      Drury, M.R., Gerald, J.D.F., 1998. Insights from laboratory studies of deformation and phase transition in the Earth's mantle. In: Ian J., ed., Mantle geology. Cambridge University, 503-559.
      Fang, Q.S., Bai, W.J., 1981. Discovery of Alpine-type diamond-bearing ultrabasic inclusions in Tibet. Geol. Review, 45(5): 447-455(in Chinese with English abstract).
      Goarant, F. Guyot, F., Peyronneau, J., et al., 1992, High-pressure and high temperature reaction between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy. J. Geophys. Res. , 97: 4477-4487. doi: 10.1029/92JB00018
      Hazen, R.M., Finger, L.W., 1979. Crystal structure and compressibility of zircon at high pressure. Amer. Mineral. , 64: 196-201. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/64/1-2/196/104641/Crystal-structure-and-compressibility-of-zircon-at
      Kawada, K., 1977. The system Mg2SiO4-Fe2SiO4 at high pressure and temperature and Earth's interior. Ph. D. Thesis. Univ. of Tokyo, Tokyo, Japan.
      Knittle, E., Jeanloz, R., 1989. Simulating the core-mantle boundary: An experimental study of high-pressure reaction between silicates and liquid iron. Geophys. Res. Lett. , 16: 609-612. doi: 10.1029/GL016i007p00609
      Knittle, E., Jeanloz, R., 1991. Earth's core-mantle boundary: Results of experiments at high pressures and temperature. Science, 25: 1438-1443.
      Liou, J.G., Wang, Q., Zhai, M., et al., 1995. Ultrahigh-pressure metamorphic rocks and their associated lithologies from the Dabie mountains, Central China: A field symposium. Chinese Science Bulletin, 40: 1-71. doi: 10.1360/csb1995-40-1-1
      Liou, J.G., Zhang, R.Y., 1996. Occurrence of intergranular coesite in Sulu ultrahigh-pressure rocks from China: Implications for fluid activity during exhumation. Amer. Mineral. , 81: 1217-1221. doi: 10.2138/am-1996-9-1020
      Liu, L.G., Bassett, W.A., Takahashi, T., 1974. Effect of pressure on the lattice parameter of stishovite. J. Geophys. Res. , 79: 1160-1164. doi: 10.1029/JB079i008p01160
      Liu, L., 1975. Post-oxide phases of forstorite and enstatite. Geophys. Res. Lett. , (2): 417-419.
      Liu, F.L., Xu, Z.Q., Liou, J.G., et al., 2002. Ultrahigh-pressure mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. Eur. J. Mineral. , 14: 499-512. doi: 10.1127/0935-1221/2002/0014-0499
      Malpas, J., Zhou, M.F., Robinson, P.T., et al., 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung-Zangbo ophiolites, southern Tibet. In: Dilek, Y., Robinson, P.T., eds., Ophiolites in Earth history. Geological Society of London Special Publications, 218: 191-206.
      Meyer, H.O.A., Mccallum, M.E., 1986. Mineral inclusion in diamonds from the Sloanv kimberliters. Colorado J. Geol. , 94: 600-612.
      Moore, G.O., Gurney, J.J., 1985. Pyroxene solid solution in garnets included in diamond. Nature, 335: 784-789. https://www.nature.com/articles/318553a0
      O'Brien, P.J., Zotv, N., Law, R., et al., 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29: 435-438.
      Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav massif, Northern Kazakhstan. Amer. Mineral. , 87(4): 454-461. doi: 10.2138/am-2002-0409
      Schmidt, M., W., Stefano, P., Paola, C., et al., 1997. High-pressure behavior of kyanite: Decomposition of kyanite into stishovite and corundum. Amer. Mineral. , 82: 460-466. doi: 10.2138/am-1997-5-603
      Smith, D.C., 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641-644. doi: 10.1038/310641a0
      Smyth, J.R., Hazen, R.M., 1973. The crystal structure and hortonolite at several temperatures up to 900 ℃. Amer. Mineral. , 58: 588-593.
      Sobolev, N.V., Snyder, G.A., Yefimova, E.S., et al., 1999. Composition and petrogenesis of Ti-oxides associated with diamond. Intern. Geol. Rev. , 41: 129-140. doi: 10.1080/00206819909465135
      Sobolev, N.V., Fursenko, B.A., Goyainov, S.V., et al., 2000. Fossilized high pressure from the Earth's deep interior: The coesite-in-diamond barometer. Proc. Nat. Acad. Sci. , 97: 11875-11879. doi: 10.1073/pnas.220408697
      Sobolev, N.V., Shatsky, V.S., 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343: 742-746. doi: 10.1038/343742a0
      Sobolev, N.V., Shatsky, V.S., Valilov, M.A., 1992. Inclusions of diamond, coesite and co-existing minerals in zircons and garnet from metamorphic rocks of Kokchetav massif (northern Kazakhstan, USSR). Proc. 29th Int. Geol. Congr, 2599.
      Stishov, S.M., Popova, S.V., 1961. New dense polymorphic modification of silica. Geochemistry, 10: 837-839.
      Wan, X.Q. Luba, F.J., Massimo, S., 2002. Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India-Eurasia collision. Lethaia, 35: 131-145. doi: 10.1080/002411602320183999
      Wang, H.S., Bai, W. J., Wang, B.X., et al., 1983. The chromite in China and its origin. Science Press, Beijing, 1 -248(in Chinese).
      Wang, X.B., Bao, P.S., Deng, W.M., et al., 1987. Xizang (Tibet) ophiolites. Geological Publishing House, Beijing, 336(in Chinese).
      Wang, X.M., Liou, J.G., Mao, H.G., 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology, 17: 1085-1088.
      Xiao, X.C., 1984. The Xigaze ophiolite of southern Xizang(Tibet) and its relevant tectonic problems. In: Li, G.Q., Mercier, J.L., eds., The review about Himalaya between France and China. Geological Publishing House, Beijing, 143-163(in Chinese).
      Xu, Z.Q., 1987. Etude tectonique et microtectonique de la chaine paleozoique et triasique des Qinlings(Chine). Academie de Montpellier Universite des Sciences et Techniques du Languedoc, 96-98.
      Yagi, T., Akimoto, S., 1976. Direct determination of coesitestishovite transition by in situ X-ray measurements. Tectonophysics, 35: 259-270. doi: 10.1016/0040-1951(76)90042-1
      Yang, F.Y., Kang, Z.Q., Liu, S.C., 1981. New octahedral pseudomorphs of lizardite and its origin. Acta Min. Sin. , 1: 52-54(in Chinese with English abstract).
      Yang, J.S., Bai, W.J., Fang, Q.S., et al., 2002a. Silicon-rutile—An ultra-high pressure(UHP)mineral from an ophiolite. Progr. Natur. Sci. , 12(11): 1220-1222(in Chinese).
      Yang, J.S., Song, S.G., Xu, Z.Q., et al., 2001. Discovery of coesite in the North Qaidam Early Paleozoic ultrahigh-high pressure metamorphic belt, NW China. Acta Geol. Sin. , 75(2): 175-179(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1251805001017189
      Yang, J.S., Xu, Z.Q., Wu, C.L., et al., 2002b. SHRIMP U-Pb dating on coesite-bearing zircon: Evidence for Indosinian ultrahigh-pressure metamorphism in Su-Lu, East China. Acta Geol. Sin. , 76(3): 354-372(in Chinese with English abstract). https://okayama.pure.elsevier.com/en/publications/shrimp-u-pb-dating-on-coesite-bearing-zircon-evidence-for-indosin
      Yi, L.W., 1987. Geological significance of studying pseudomophous octahedral of serpentine and chlorite in ultramafic rocks. Acta Petrologica et Mineralogica, 6(4): 374-380 (in Chinese with English abstract).
      Yu, S.C., Tung, S.F., Lee, J.S., et al., 2001. Structural and spectroscopic features of mantle-derived zircon crystals from Tibet. W. Paci. Earth Sci. , 1(1): 47-58.
      Zhang, A.D., Xie, X.L., Guo, L.H., et al., 1991. Predicting minerals in diamond exploration and related data base. Science Press, Beijing, 1-122(in Chinese).
      Zhang, H.Y., Ba, D.Z., Guo, T.Y., et al., 1996. The Luobusha chromite in Qusong, Tibet. Xizang Publishing House, Lhasa(in Chinese).
      Zhang, J., Li, B., Utsumi, W., et al., 1996. In situ X-ray observations of the coesite-stishovite transition: Reversed phase boundary and kinetics. Phys. Chem. Miner. , 23: 1 -10. https://www.researchgate.net/publication/225893517_In_situ_X-ray_observations_of_the_coesite-stishovite_transition_Reversed_phase_boundary_and_kinetics
      Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996. Podiform chromitites in the Luobusha ophiolite(Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. J. Petrol. , 37: 3-21. doi: 10.1093/petrology/37.1.3
      Zhou, S., Mo, X.X., Mahoney, J.J., et al., 2002. Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the Luobusha ophiolite, Tibet. Chinese Sci. Bull. , 47: 143 -146.
      白文吉, 方青松, 张仲明, 等, 2001a. 西藏罗布萨蛇绿岩中豆荚状铬铁矿中镁橄榄石的晶体结构及其意义. 岩石矿物学杂志, 20(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200101000.htm
      白文吉, 杨经绥, 方青松, 等, 2001b. 寻找超高压地幔矿物的储存库—豆荚状铬铁矿. 地学前缘, 8(3): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103017.htm
      白文吉, 周美付, 方青松, 等, 2000. 西藏罗布莎豆荚状铬铁矿、金刚石及伴生矿物成因. 北京: 地震出版社, 1-98.
      方青松, 白文吉, 1981. 西藏首先发现金刚石的阿尔卑斯型岩体特征. 地质论评, 45(5): 447-455. doi: 10.3321/j.issn:0371-5736.1981.05.011
      王恒升, 白文吉, 王炳熙, 等, 1983. 中国铬铁矿及其成因. 北京: 科学出版社, 1-248.
      王希斌, 鲍佩声, 邓万明, 等, 1987. 西藏蛇绿岩. 北京: 地质出版社, 336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711010.htm
      肖序常, 1984. 藏南日喀则蛇绿岩以及有关的大地构造问题. 见: 李光芩, 麦尔西叶, J.L., 中法喜马拉雅考察成果. 北京: 地质出版社, 143-163.
      杨凤英, 康志勤, 刘淑春, 1981. 蛇纹石中八面体假象及其成因初步讨论. 矿物学报, 1: 52-54. doi: 10.3321/j.issn:1000-4734.1981.01.009
      杨经绥, 白文吉, 方青松, 等, 2002a. 蛇绿岩中的一种超高压矿物—硅金红石. 自然科学进展, 12(11): 1220-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200211028.htm
      杨经绥, 宋述光, 许志琴, 等, 2001. 柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物—柯石英. 地质学报, 75(2): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200102004.htm
      杨经绥, 许志琴, 吴才来, 等, 2002b. 含柯石英锆石的SHRIMP U-Pb定年: 胶东印支期超高压变质作用的证据. 地质学报, 76(3): 354-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200203010.htm
      易隶文, 1987. 研究超镁铁岩中八面体假象蛇纹石和绿泥石的地质意义. 岩石矿物学杂志, 6(4): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198704014.htm
      张安棣, 谢锡林, 郭立鹤, 等, 1991. 金刚石找矿指示矿物研究及数据库. 北京: 科学出版社, 1-122.
      张浩勇, 巴登珠, 郭铁鹰, 等, 1996. 西藏自治区曲松县罗布萨铬铁矿研究. 拉萨: 西藏人民出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (3978) PDF downloads(15) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return