• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 29 Issue 5
    Sep.  2004
    Turn off MathJax
    Article Contents
    FU Qing-ping, McInnes Brent I.A., Davies Peter J., 2004. Numerical Modelling of Thermal and Exhumation Histories of Magmatic Ore Deposits. Earth Science, 29(5): 555-562.
    Citation: FU Qing-ping, McInnes Brent I.A., Davies Peter J., 2004. Numerical Modelling of Thermal and Exhumation Histories of Magmatic Ore Deposits. Earth Science, 29(5): 555-562.

    Numerical Modelling of Thermal and Exhumation Histories of Magmatic Ore Deposits

    • Received Date: 2004-06-15
    • Publish Date: 2004-09-25
    • The purpose of this paper is to quantify the thermal and exhumation histories of magmatic ore deposits by combining U-Th-He thermochronometrical data with computer modelling techniques.The numerical modelling of magmatic cooling has been first attempted and then integrated with the exhumation cooling to produce a digitized cooling curve which is further constrained by U-Th-He thermochronometer.The modelling results indicate that the magmatic cooling of igneous bodies is complicated.The cooling history of an igneous body can be divided into two distinct stages.In the first stage, the igneous body cools rapidly while the ambient country rock is heated simultaneously.In the second stage, the temperature of the igneous body is slightly higher than or close to that of the country rock, but the geothermal gradient in the vicinity is still higher than the initial thermal conditions, and thus both the igneous and country rocks cool slowly until both reach a final thermal equilibration under the normal thermal conditions.The cooling of the igneous body is affected by many factors, among which the size and the emplacement depth are the principal factors controlling the cooling rates and the durations of the two cooling stages.The complete thermal history requires an understanding of the exhumation history and this is achieved by the combined modelling of thermal and exhumation cooling resulting in a temperature-age curve constrained by the apatite U-Th-He, zircon U-Th-He, and zircon U-Pb age data.The validity of this curve was successfully tested against data obtained from porphyry copper deposits in Iran.The digitized temperature-age curve defines the time and depth of emplacement, crystallization age of economic minerals, cooling rate, cooled and exposure ages, and exhumation/erosion rates for the porphyry copper deposit.Therefore, the combination of highly precise age dating and computer modelling techniques can not only quantify the thermal and exhumation histories of ore systems, but also provide an insight into the genesis of the ore deposits.

       

    • loading
    • Carslaw, H.S., Jaeger, J.C., 1959. Conduction of heat in solids. 2nd ed. Oxford Science Publications, New York.
      Crank, J., Nicolson, P., 1947. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Cambridge Philos. Soc. , 43: 50-67. doi: 10.1017/S0305004100023197
      Delaney, P.T., 1988. Fortran 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization. Computers & Geosciences, 12(2): 181-212.
      Ehlers, T.A., Farley, K.A., 2003. Apatite(U-Th)/He thermochronology: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206: 1-14. doi: 10.1016/S0012-821X(02)01069-5
      Farley, K.A., House, M.A., Kohn, B.P., 1998. Laboratory and natural diffusivity calibrations for apatite(U-Th)/He thermochronology. Mineralogical Magazine, 62A: 436-437. doi: 10.1180/minmag.1998.62A.1.231
      Farley, K.A., 2002. (U-Th)/He dating: Techniques, calibration, and applications. In: Porcelli, D., Ballentine, C.J., Wieler, R., eds., Noble gases in geochemistry. Reviews in Mineralogy and Geochemistry, 47: 819-843.
      Gleadow, A.J.W., Duddy, I.R., 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5: 169-174. doi: 10.1016/0191-278X(81)90039-1
      Hardee, H.C., 1982. Permeable convection above magma bodies. Tectonophysics, 84: 179-195. doi: 10.1016/0040-1951(82)90159-7
      House, M.A., Wernicke, B.P., Farley, K.A., et al., 1997. Cenozoic thermal evolution of the central Sierra Nevada, California, from(U-Th)/He thermochronometry. Earth & Planetary Science Letters, 151: 167-179.
      Jaeger, J.C., 1968. Cooling and solidification of igneous rocks. In: Hess, H.H., Poldervaart, A., eds., Basalts 2. Interscience Publishers, New York, 503-536.
      Jaeger, J.C., 1959. Temperatures outside of a cooling intrusive sheet. American Journal of Science, 257: 44-54. doi: 10.2475/ajs.257.1.44
      Lippolt, H. J., Leitz, M., Wernicke, R. S., et al., 1994. (U-Th)/He dating of apatite experience with samples from different geochemical environments. Chemical Geology, 112(1-2): 179-191. doi: 10.1016/0009-2541(94)90113-9
      Lovering, T.S., 1955. Temperatures in and near intrusions. Economic Geology, 50: 249-281. doi: 10.2113/gsecongeo.50.3.249
      McInnes, B.I.A., Farley, K.A., Sillitoe, R.H., et al., 1999. Application of(U-Th)/He dating to the estimation of the sense and amount of vertical fault displacement at the Chuquicamata Mine, Chile. Economic Geology, 94: 937-948. doi: 10.2113/gsecongeo.94.6.937
      Philpotts, A.R., 1990. Principles of igneous and metamorphic petrology. Prentice Hall, Englewood Cliffs.
      Reilly, W.I., 1958. Temperature distribution about a cooling volcanic intrusion. New Zealand Journal of Geology and Geophysics, 1: 364-374. doi: 10.1080/00288306.1958.10423188
      Reiners, P.W., Farley, K.A., Hickes, H.J., 2002. He diffusion and(U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349: 297-308. doi: 10.1016/S0040-1951(02)00058-6
      Sengor, A.M.C., Kidd, W.S.F., 1979. Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55: 361-376. doi: 10.1016/0040-1951(79)90184-7
      Sillitoe, R.H., 1973. The top and bottoms of porphyry copper deposits. Economic Geology, 68: 799-815. doi: 10.2113/gsecongeo.68.6.799
      Spera, F.J., 1982. Thermal evolution of plutons: A parameterized approach. Science, 207: 299-301.
      Stein, H.J., Cathles, L.M., 1997. The timing and duration of hydrothermal events. Economic Geology, 92(7/8): 763-765.
      Turcotte, D. L., Schubert, G., 2002. Geodynamics. 2nd ed. Cambridge University Press, Cambridge.
      Webber, K.L., Falster, A.U., Simmons, W.B., et al., 1997. The role of diffusion-controlled oscillatory nucleation of line rock in pegmatite-aplite dikes. Journal of Petrology, 38: 1777-1791. doi: 10.1093/petroj/38.12.1777
      Wolf, R.A., Farley, K.A., Silver, L.T., 1996. Helium diffusion and low temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. doi: 10.1016/S0016-7037(96)00192-5
      Yoder, H.S., Tilley, C.E., 1962. Origin of basalt magmas: An experimental study of natural and synthetic rock systems. Journal of Petrology, 3: 342-532. doi: 10.1093/petrology/3.3.342
      Zeitler, P.K., Herczeg, A.L., McDougall, I., et al., 1987. U-Th-He dating of apatite: A potential thermochronometer. Geochim. Cosmochim. Acta, 51: 2865-2868. doi: 10.1016/0016-7037(87)90164-5
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (3515) PDF downloads(6) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return