• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 31 Issue 3
    May  2006
    Turn off MathJax
    Article Contents
    SHANG Lin-bo, HU Rui-zhong, FAN Wen-ling, 2006. A Preliminary Study of the Solubility of Copper in Water Vapor. Earth Science, 31(3): 321-325.
    Citation: SHANG Lin-bo, HU Rui-zhong, FAN Wen-ling, 2006. A Preliminary Study of the Solubility of Copper in Water Vapor. Earth Science, 31(3): 321-325.

    A Preliminary Study of the Solubility of Copper in Water Vapor

    • Publish Date: 2006-05-25
    • In recent years, geological evidence and the available experimental data have shown that a significant quantity of copper can be transported in vapor. It has been recognized that the transport of copper in vapor may be an important geochemical process. But, up to now, little work has been done on the mechanisms of dissolution of copper in vapor. In this paper, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures of 310 to 350℃and pressures from 4. 2 to 10 MPa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gas. At the same temperature, the solubility of copper increases with the increase of water vapor pressure. Copper may exist as hydrated gaseous particles in the vapor phase. The dissolution process can be described by the reaction: CuClmsolid +nH2O gas=CuClm·(H2O)ngas(m=1, 2). The hydration number decreases with increasing temperature, varying from -6 at 310 ℃, to -5 at 330 ℃ and -4 at 350℃. The results show that the interactions between gas-solvent H2O and copper significantly enhance the capacity of dissolution and transport of copper in the gas phase.

       

    • loading
    • Archibald, S.M., Migdisov, A.A., Williams-Jones, A. E., 2001. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 65(23): 4413-4423. doi: 10.1016/S0016-7037(01)00730-X
      Archibald, S.M., Migdisov, A.A., Williams-Jones, A. E., 2002. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 66(9): 1611-1619. doi: 10.1016/S0016-7037(01)00867-5
      Barnes, H.L., 1997. Geochemistry of hydrothermal ore deposits. 3rd edition. Jonh Wiley and Sons, New York.
      Brewer, L., Lofgren, N., 1950. The thermodynamics of gaseous cuprous chloride, monomer and trimer. J. Am. Chem. Soc., 72: 3038-3045. doi: 10.1021/ja01163a066
      Dienstbach, F., Emmenegger, F.P., Schlaepfer, C.W., 1977. Vaporization of copper(Ⅱ)chloride and the structure of vapor studied using UV/visible and Raman spectroscopy. Inst. Anorg. Anal. Chem. Helv. Chim. Acta, 60: 2460-2470. doi: 10.1002/hlca.19770600732
      Gemmell, J. B., 1987. Geochemistry of metallic trace elements in fumarole condenstates from Nicaraguan and Costa Rican volcanoes. Journal of Volcanology and Geothermal Research, 33: 161-181. doi: 10.1016/0377-0273(87)90059-X
      Heinrich, C.H., Ryan, C.G., Mernagh, T.P., et al., 1992. Segregation of ore metals between magmatic brine and vapor: A fluid inclusion study using PIXE microanalysis. Economic Geology, 87: 1566-1583. doi: 10.2113/gsecongeo.87.6.1566
      Heinrich, C.A., Günther, D., Audétat, A., 1999. Metal fractionation between magmatic brine and vapor, determinded by microanalysis of fluid inclusions. Geology, 87: 755-758.
      Kestin, J., Sengers, J. V., Kamgar-Parsi, B., et al., 1984. Thermophysical properties of fluid H2O. J. Phys. Chem. Re f. Data, 13: 175-183. doi: 10.1063/1.555707
      Lowenstern, J. B., Mahood, G. A., Rivers, M. L., et al., 1991. Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252(7): 1405-1409.
      Migdisov, A.A., Williams-Jones, A.E., Suleimenov, O.M., 1999. Solubility of chlorargyrite(AgCl) in the water vapor at elevated temperature and pressures. Geochimica et Cosmochimica Acta, 63(22): 3817-3827. doi: 10.1016/S0016-7037(99)00213-6
      Peterson, D.E., 1973. Sublimation thermodynamics and kinetics of cuprous-chloride. Part Ⅰ : Vacuum balancetorsion experiments. PartⅡ : Mass-spectrometer experiments(Dissertation). University of Kansas, Kansas, 484.
      Pokrovski, G.B., Zakirov, I.V., Roux, J., et al., 2002. Experimental study of arsenic speciation in vapor phase to 500℃ : Implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochimica et Cosmochimica Acta, 66(19): 3453 3480. doi: 10.1016/S0016-7037(02)00946-8
      Seward, T.M., Henderson, C.M., Charnock, J.M., et al., 1996. An X-ray absorption(EXAFS) spectroscopic study of aquated Ag+ in hydrothermal solutions to 350℃. Geochim. Cosmochim. Acta, 60: 2273-2282. doi: 10.1016/0016-7037(96)00098-1
      Sheller, B., 1976. A transpiration-mass spectrometric technique for the determination of the thermodynamic properties of chloride vapor transport reactions(Dissertation). Colorado School of Mines, Golden, Colorado, 197.
      Taran, Y. A., Bernard, A., Gavilanes, J. C., et al., 2000. Native gold in mineral precipitates from high temperature volcanic gases of Colima volcano, Mexico. Applied Geochemistry, 15: 337-346. doi: 10.1016/S0883-2927(99)00052-9
      Ulrich, T., Günther, D., Heinrich, C.A., 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399(17): 676-679.
      Williams-Jones, A.E., Migdisov, A.A., Archibald, A.M., et al., 2002. Vapor-transport of ore metals. Water-Rock Interactions, Ore Deposits, and Envrionmental Geochemistry, 7: 279-305.
      Xiao, Z., 1999. Experimental and theoretical studies of the solubility of copper in liquid and vapor in the system NaCl-HCl-H2O (Dissertation). Mcgill University, Montreal.
      Zakaznova-Iakovleva, V. P., Migdisov, A. A., Suleimenov, O.M., et al., 2001. An experimental study of stibnite solubility in gaesous hydrogen sulphside from 200 to 320℃. Geochimica et Cosmochimica Acta, 65(2): 289 298. doi: 10.1016/S0016-7037(00)00523-8
      Zhang, R.H., Hu, S., 2002. A case study of the influx of upper mantle fluids into the crust. Journal of Volcanology and Geothermal Research, 118: 319-338. doi: 10.1016/S0377-0273(02)00300-1
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(1)

      Article views (4046) PDF downloads(8) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return