• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 31 Issue 3
    May  2006
    Turn off MathJax
    Article Contents
    CHENG Qiu-ming, 2006. Singularity-Generalized Self-Similarity-Fractal Spectrum (3S) Models. Earth Science, 31(3): 337-348.
    Citation: CHENG Qiu-ming, 2006. Singularity-Generalized Self-Similarity-Fractal Spectrum (3S) Models. Earth Science, 31(3): 337-348.

    Singularity-Generalized Self-Similarity-Fractal Spectrum (3S) Models

    • Received Date: 2006-03-08
    • Publish Date: 2006-05-25
    • This paper introduces a new framework of mineral resource assessment according to the principle of multifractal modeling, particularly, Singularity, Generalized Self-Similarity and Fractal Spectrum (3S). It has been demonstrated that the concepts and models relevant to multifractal theory are useful not only for characterizing the fundamental properties of non-linearity of the mineralization processes, the singular distribution of mineral deposits and ore element concentrations in mineral districts, but also for singularity analysis and anomaly delineation. The theory can explain many properties of mineralization and spatial-temporal distribution spectra of mineral deposits such as mineral aggregation, singular distribution of element concentration, multifractal tonnage-grade model, fractal growth of minerals, and self-organized processes. Integrating multifractal principals, mineralization processes, distribution of mineral deposits, and resource assessment have resulted in an effective new approach for mapping mineral resources and modeling mineral targets. Together with the advanced GeoDAS GIS technology it serves as a novel principal methodology and technology for mineral resource assessment.

       

    • loading
    • Agterberg, F.P., 1995. Power-law versus lognormal model in mineral exploration. In: Mitri, H.S., ed., Computer applications in the mineral industry. Proceedings of the Third Canadian Conference on Computer Applications in the Mineral Industry, 17-26.
      Agterberg, F.P., 2001. Multifractal simulation of geochemical map patterns. Earth Science-Journal of China University of Geosciences, 26(2): 142-151(in Chinese with English abstract).
      Bak, P., 1996. How nature works. Springer-Verlag, New York.
      Bonham-Carter, G.F., 1994. Geographic information system for geosciences: Modelling with GIS. Pergamon Press, Oxford, 1-398.
      Chacron, M., I。'Heureux, I., 1999. A new model of periodic precipitation incorporating nucleation, growth and ripening. Physics Letters A, 263: 70-77. doi: 10.1016/S0375-9601(99)00709-4
      Chen, Z., Cheng, Q, Chen, J., 2005. Significance of fractal measure in local singularity analysis of multifractal model. In: Cheng, Q M, 130nham-Carter, G., eds., Proceedings of IAMG'05: GIS and Spatial Analysis, 1: 475 -480.
      Cheng, Q M, 1994. Multifractal modeling and spatial analysis with GIS: Gold potential estimation in the MitchellSulphurets area, northwestern British Columbia(Dissertation). Univ. Ottawa, Ottawa, 268.
      Cheng, Q M., Agterberg, F.P., 1996. Comparison between two types of multifractal modeling. Mathematical Geology, 28(8): 1001-1016. doi: 10.1007/BF02068586
      Cheng, Q M., Agterberg, F.P., Ballantyne, S.B., 1994a. The separation of geochemical anomalies from background by fractal methods. Journal of Exploration Geochemistry, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      Cheng, Q M., Agterberg, F.P., Bonham-Carter, G.F., 1994b. Fractal pattern integration for mineral potential mapping. Proceedings IAMG'94, MontTremblant, Quebec., Oct., 74-80.
      Cheng, Q M, Xu, Y., Grunsky, E, 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation-In: Lippard, J.L., Naess, A, Sinding-Larsen, R., eds., Proc. Int. Assoc. Mathematical Geology Meeting, Trondheim, Norway, I: 87-92.
      Cheng, Q M., 1995. The perimeter-area fractal model and its application to geology. Mathematical Geology, 27(1): 69-82. doi: 10.1007/BF02083568
      Cheng, Q M., 1997a. Fractal/multifractal modeling and spatial analysis. Keynote lecture in Proceedings of the International Association for Mathematical Geology Conference, 1: 57-72.
      Cheng, Q M., 1997b. Discrete multifractals. Journal of Mathematical Geology, 29(2): 245-266. doi: 10.1007/BF02769631
      Cheng, Q M., 1999a. Spatial and scaling modeling for geo chemieal anomaly separation. Journal of Exploration Geochemistry, 65: 175-194. doi: 10.1016/S0375-6742(99)00028-X
      Cheng, Q M., 1999b. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961.
      Cheng, Q M., 1999c. The gliding box method for multifractal modeling. Computers & Geosciences, 25(9): 1073-1079.
      Cheng, Q M., 2000. GeoData analysis system(GeoDAS)for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York University, Nov. 1 to 3, 2000, 204. Available at www. gisworld. org/geodas.
      Cheng, Q M, 2003a. Non-linear mineralization models and information processing methods for prediction of unconventional mineral resources. Earth Science-Journal of China University of Geosciences, 28(4): 445-454(in Chinese with English abstract).
      Cheng, Q M., 2003b. Fractal and multifraetal modeling of hydrothermal mineral deposit spectrum: Application to gold deposits in the Abitibi area, Canada. Journal of China University of Geosciences, 14(3): 199-206.
      Cheng, Q M, 2004a. Quantifying generalized self-similarity analysis of spatial patterns for mineral resource assessments. Earth Science-Journal of China University of Geosciences, 29(6): 733-744(in Chinese with English abstract).
      Cheng, Q.M., 2004b. A new model for quantifying anisotropic scale invariance and decomposing of complex patterns. Mathematical Geology, 36(3): 345-360.
      Cheng, Q M., 2005a. Multifractal distribution of Eigenvalues and Eigenvectors from 2D multiplicative cascade multifractal fields. Mathematical Geology, 37(8): 915-927. doi: 10.1007/s11004-005-9223-1
      Cheng, Q M, 2005b. A new model for incorporating spatial association and singularity in interpolation of exploratory data. In: Leuangthong, O.D., Clayton, v., eds., Geostatistics Banff 2004. Quantitative Geology and Geostatistics, 14(2): 1017-1025(Springer).
      Cheng, Q M, 2005c. Muhiplicative cascade mineralization processes and singular distribution of mineral deposit associated geochemical anomalies. In: Cheng, Q M, Bonham-Carter, G., eds., Proceedings of Annual Conference of the|nternational Association for Mathematical Geology(IAMG'05), GIS and Spatial Analysis, l: 297-302.
      Cheng, Q M, 2006. GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris, J., ed., GIS applications in earth sciences. Geological Association of Canada Special Book, 289-300.
      Falconer, K., 2004. Fractals and chaos: The Mandelbrot set and beyond. Nature, 430(6995): 18-20.
      Feder, J., 1988. Fractals. Plenum Press, New York, 283.
      Fowler, A D., 1994. The role of geopressure zones in the formation of hydrothermal Pb-Zn Mississippi Valleytype mineralization in sedimantary basins. In: Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geol. Soci. Spec. Pub., 78: 293-300.
      Fowler, A D., I. 'Heureux, I., 1996. Self-organized banded sphalerite and branching galena in the Pine Point ore deposit, Northwest Territories. Canadian Mineralogist, 34(Part 6): 1211-1222.
      Giles, J., 2004. Benoit Mandelbrot: Father of fractals. Nature, 432(7015): 266-267. doi: 10.1038/432266a
      Herzfeld, U.C., 1999. Geostatistical interpolation and classification of remote sensing data from ice surfaces. International Journal of Remote Sensing, 20(2): 307-327. doi: 10.1080/014311699213460
      L'Heureux, I., Fowler, A D., 2000. A simple model of flow pattern in overpressured sedimentary basins with heat transport and fracturing. J. Geophys. Res., 105: 23741—23752. doi: 10.1029/2000JB900198
      Li, Q.M., Cheng, Q M, 2004. Fractal singular-value(Eginvalue)decomposition method for geophysical and geochemical anomaly reconstruction. Earth Science-Jourhal of China University of Geosciences, 29(1): 109-118(in Chinese with English abstract).
      Li, Q.M., Cheng, Q M, 2006. Multifractal modeling in Walsh domain and signal processing in GIS environment. Chinese Journal of Geophysics(in Chinese with English abstract)(in Press).
      Lovejoy, S. 1982. Area-perimeter relation for rain and cloud areas. Science, 216(4542): 185-187. doi: 10.1126/science.216.4542.185
      Lovejoy, S., Schertzer, D., Ladoy, P., 1987. Fractal characterization of inhomogeneous geophysical measuring networks. Nature, 319(6048): 43-44.
      Mandelbrot. B B, 1972. Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C, eds., Statistical models and turbulence, lecture notes in physics, 12. Springer, New York, 333-351.
      Mandelbrot, B. B, 1982. The fractal geometry of nature. W. H. Freeman, New York, 468.
      Ortoleva, P., 1994. Geochemical self-organization. Oxford University Press. New York.
      Ottino, J.M., Muzzio, F.J., Tjiahjadi, M, et al., 1992. Chaos, symmetry, and self-similarity-exploiting order and disorder in mixing processes. Science: 257(5071): 754-760. doi: 10.1126/science.257.5071.754
      Schertzer, D., Lovejoy, S., 1991. Nonlinear variability in geophysics. Kluwer Academic, Dordrecht, The Netherlands, 318.
      Shore, M., Fowler, A.D., 1999. The origin of spinifex texture in komatites. Nature, 397(6721): 691-694. doi: 10.1038/17794
      Turcotte, D. L, 2002. Fractals in petrology. Lithos, 65: 261-271. doi: 10.1016/S0024-4937(02)00194-9
      Wang, Z.J., Cheng, Q M, 2006. Fractal modelling of the microstructure property of quartz mylonite during deformation process. Mathematical Geology(in Press).
      Yu, C W., 1999. Chaos edge of large deposits and mineral districts. Earth Science Frontiers, 6(1): 85-102(in Chinese with English abstract).
      Yu, C.W., 2002. Complexity of geosystems: Basic issues of geological science(I). Earth Science-Journal of China University of Geosciences, 27(5): 509-519(in Chinese with English abstract).
      Zhang, Z., Mao, H., Cheng, Q M, 2001. Fractal geometry of element distribution on mineral surface. Mathematical Geology, 33(2): 217-228. doi: 10.1023/A:1007587318807
      Zhao, P.D., 1998. Geological anomaly theory and mineral deposits prediction: Advanced mineral resources assessment theory and methods. Geological Publishing House, Beijing(in Chinese).
      Zhao, P.D., 2004. Quantitative methods and application in geology. Higher Education Press, Beijing(in Chinese).
      Zhao, P.D., Chen, J.P., Zhang, S.T., 2003. Recent progress of"three components''mineral deposit prediction. Earth Science Frontiers, 10(2): 455-462(in Chinese with English abstract).
      Agterberg, F.P., 2001. 地球化学图纹理的多重分形模拟. 地球科学——中国地质大学学报, 26(2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102009.htm
      成秋明, 2003a. 非线性矿床模型与非常规矿产资源评价. 地球科学——中国地质大学学报, 28(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304015.htm
      成秋明, 2004a. 空间模式的广义自相似性分析和矿产资源评价. 地球科学——中国地质大学学报, 29(6): 733-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406012.htm
      李庆谋, 成秋明, 2004. 分形奇异(特征)值分解方法与地球物理和地球化学异常重建. 地球科学——中国地质大学学报, 29(1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401019.htm
      李庆谋, 成秋明, 2006. walsh列率域中多维分形模型与GIS环境下地球物理信号处理. 地球物理学报(出版中). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200706033.htm
      於崇文, 1999. 大型矿床和成矿区(带)在混沌边缘. 地学前缘, 6(1): 85-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY901.012.htm
      於崇文, 2002. 地质系统的复杂性——地质科学的基本问题(王). 地球科学——中国地质大学学报, 27(5): 509-519.
      赵鹏大, 1998. 地质异常理论与矿床预测: 现代矿产资源评价理论与方法. 北京: 地质出版社.
      赵鹏大, 2004. 定量地学方法及应用. 北京: 高等教育出版社.
      赵鹏大, 陈建平, 张寿庭, 2003. "三联式"成矿预测新进展. 地学前缘, 10(2): 455-462. doi: 10.3321/j.issn:1005-2321.2003.02.025
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(1)

      Article views (4586) PDF downloads(45) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return