• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 31 Issue 3
    May  2006
    Turn off MathJax
    Article Contents
    ZHOU Gang, NI Xiao-yang, LI Jin-feng, Wolff H., 2006. Geothermal and Solar Energy Combined Power Generation System—An Environment Friendly System Insubject to Geographic Location. Earth Science, 31(3): 394-398.
    Citation: ZHOU Gang, NI Xiao-yang, LI Jin-feng, Wolff H., 2006. Geothermal and Solar Energy Combined Power Generation System—An Environment Friendly System Insubject to Geographic Location. Earth Science, 31(3): 394-398.

    Geothermal and Solar Energy Combined Power Generation System—An Environment Friendly System Insubject to Geographic Location

    • Received Date: 2005-08-30
    • Publish Date: 2006-05-25
    • The utilization of closed loop, which generates power by combining the geothermal system with solar energy system, is feasible to solve energetic problem and to exploit renewable energy. The power generation system can avoid such environmental problems as earthquake, heat pollution, ground sedimentation, decrease of geothermal water resources, toxicant pollution, caused by mass use of geothermal water resources. Moreover, the system is expected to be free of the limitation of the geographic location. The technology is to generate power by taking the advantage of the closed loop which combines the geothermal system with solar energy system. The geothermal system is suitable for ORC power generation since the vertical depth of the underground part is 3-5 km, horizontal distance is around 5-7 km, and the fluid temperature in the horizontal well comes to around 150 ℃. Trough paraboloid mirror is used in the solar energy system to collect heat in which either water or oil is feasible as heat collecting fluid, and it is possible for temperature to reach as high as or even higher than 350 ℃. Primary circulation media is water and the secondary one is isobutane. The maximal power generation productivity of ORC is 20% in the daytime and 12% at night. Chemical storage energy is adopted in the system which has a storage-density 10 times higher than the apparent-heat storage energy and the potential-heat one. The system is proved to be feasible after studying the relative technologies of drilling and completion, the transformation from solar energy to heat energy, heat-carrier fluid, ORC and storage energy.

       

    • loading
    • Azpiazu, M. N., Morquillas, J. M., Vazquez, A., 2003. Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle. Applied Thermal Engineering, 23: 733-741. doi: 10.1016/S1359-4311(03)00015-2
      Farid, M. M., Khudhair, A. M., Razack, S. A. K., et al., 2004. A review on phase change energy storage: Materials and applications. Energy Conversion and Management, 45: 1597-1615. doi: 10.1016/j.enconman.2003.09.015
      Ge, X. S., 1994. Progress of solar energy research and related problems for study. Science Foundation in China, (3): 189-192(in Chinese).
      Geng, L. P., 1998. Geographic distribution and application of geothermal energy in China. Geology and Prospecting, 34(1): 50-54(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT801.008.htm
      Kalo, S. A., 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30: 231-295. doi: 10.1016/j.pecs.2004.02.001
      Lu, S. L., 2004. The world report of extended reach drilling. Ocean Oil, (9): 94(in Chinese).
      Santoyo, E., García, A., Morales, J. M., et al., 2001. Effective thermal conductivity of Mexican geothermal cementing systems in the temperature range from 28 ℃ to 200 ℃. Applied Thermal Engineering, 21(17): 1799-1812. doi: 10.1016/S1359-4311(01)00048-5
      Schmid, S. P., 2004. Erhöhung des Energieertrages eines Untertägig Geschlossenen Geothermischen Wärmetauschers durch die Verwendung geeigneter wärmeleitender Zementrezepturen, TU Berlin, Berlin.
      Sen, Z., 2004. Solar energy in progress and future research trends. Progress in Energy and Combustion Science, 30: 367-416. doi: 10.1016/j.pecs.2004.02.004
      Smith, D. K., 1990. Cementing. In: Henry, L., ed., Doherty memorial fund of AIME. New York.
      Trieb, F., Langnib, O., Klail, H. L., 1997. Solar electricity generation—A comparative view of technologies, costs and environmental impact. Solar Energy, 59: 89-99. doi: 10.1016/S0038-092X(97)80946-2
      Xia, L. P., Huang, P., 1997. Conduct heat oil is one excellent intermediate heat transfer medium. Petro-Chemical Equipment Technology, 18(5): 23-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHSJ705.007.htm
      Zhao, Y., Zhao, H., 1998. Resource and utilization of solar energy in China. Economic Geography, 18(1): 56-61 (in Chinese with English abstract).
      Zheng, X. H., Wolff, H., Zheng, W. L., 2004. Closed loop geothermal system—One new system of geothermal power generation. Exploration Engineering (Drilling & Tunneling), (1): 63-64(in Chinese).
      葛新石, 1994. 太阳能利用的研究与开发. 中国科学基金, (3): 189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199403011.htm
      耿莉萍, 1998. 中国地热资源的地理分布与勘探. 地质与勘探, 34(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT801.008.htm
      卢林松, 2004. 大位移井的世界纪录. 海洋石油, (9): 94. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200403029.htm
      夏丽萍, 黄萍, 1997. 导热油是一种优良的中间传热介质. 石油化工设备技术, 18(5): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSJ705.007.htm
      赵媛, 赵慧, 1998. 我国太阳能资源及其开发利用. 经济地理, 18(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL199801009.htm
      郑秀华, Wolff, H., 郑伟龙, 2004. 地下闭式循环热交换系统—一种新型地热发电系统. 探矿工程(岩土钻掘工程), (1): 63-64. doi: 10.3969/j.issn.1672-7428.2004.01.021
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(1)

      Article views (3567) PDF downloads(12) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return