• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 31 Issue 4
    Jul.  2006
    Turn off MathJax
    Article Contents
    LI Tian-fu, YANG Jing-sui, ZHANG Ru-yuan, 2006. K-Rich and Carbonatic Melt Metasomatism in Depleted Upper Mantle: Geochemical Evidences from Peridotites in Pre-Pilot Hole of Chinese Continental Scientific Drilling Project. Earth Science, 31(4): 457-474.
    Citation: LI Tian-fu, YANG Jing-sui, ZHANG Ru-yuan, 2006. K-Rich and Carbonatic Melt Metasomatism in Depleted Upper Mantle: Geochemical Evidences from Peridotites in Pre-Pilot Hole of Chinese Continental Scientific Drilling Project. Earth Science, 31(4): 457-474.

    K-Rich and Carbonatic Melt Metasomatism in Depleted Upper Mantle: Geochemical Evidences from Peridotites in Pre-Pilot Hole of Chinese Continental Scientific Drilling Project

    • Received Date: 2006-06-02
    • Publish Date: 2006-07-25
    • The Chinese pre-pilot hole (PP1) is located at Zhimafang Village,Donghai County in the Sulu UHP terrane,east China. Ultrahigh-pressure peridotites of 115 m thick within gneiss recovered from the PP1 are composed of abundant lherzolite,harzburgite,and minor wehrlite and dunite. Peridotite near to the contacts with gneiss is strongly serpentinized. More than 90 vol% peridotites contain garnet and phlogopite; some contain magnesite and Ti-clinohumite. All peridotites contain lower "fertile elements" compared with primitive mantle,their Mg# numbers range from 90.3 to 92.6,and MgO content (36.61%-49.15%,averagely 45.17%) has negative correlation with Na2O (0.01%-0.25%),Al2O3 (0.07%-3.71%,most < 2.0%,averagely 1.46%) and CaO (0.12%-2.53%,one up to 3.30%,averagely 1.00%) contents. In contrast to major element depletion feature,the PP1 peridotites show light rare earth element-enriched and slight to moderately fractionated REE pattern of nearly parallel curves and roughly identical pattern with (La/Lu) N ratios of 3.18-33.05. Most of the peridotites contain high Ba (higher than 92 times of primitive mantle) and LREE and low HFSE,and are characterized by negative Rb,Nb,Ta,Zr,Hf and Sr anomalies (e.g.,C39-157-81) in spidergrams. Ti/Eu ratios are lower than ca. 1 300. The lack of correlation between refractory degree and enrichment of incompatible elements documents effect by metasomatism after mantle melting. Petrographic characteristics show multiple metasomatism of phlogopite and magnesite. Phl-rich peridotites (such as samples C25-143-61,C32-149-71) have the K2O enrichment trend and good correlations between K2O and some LILE such as Rb,Ba and Th. No positive correlations between K2O and REE and between Sr and Ca are seen. These signatures show that peridotites were metasomatised by hydrous,silicic,aluminous and alkaline melts containing some LILE,and then severely overprinted by metasomatism of magnesite melt containing high Ba and low Rb and HFSE which modified Ba content drastically and endued REE patterns of mantle carbonatite melt. Whole rock has heterogeneously high radiogenic Sr (87 Sr/86 Sr=0.708 4-0.720 1) and low radiogenic Nd (ε_ Nd (t) =-1.14 to-8.55),which indicates the peridotites from PP1 hole was probably derived from long-term enriched mantle by agents from depth,especially combined with oxygen isotope compositions of anhydrous and hydrous minerals reported by previous studies.

       

    • loading
    • Aoki, K., Fujino, K., Akaoki, M., 1976. Titanochondrodite and titanoclinohumite derived from the upper mantle in the Buell Park kimberlite, Arizona, USA. Contributions to Mineralogy and Petrology, 56: 243-253. doi: 10.1007/BF00466824
      Bodinier, J. L., Dupuy, C., Dostal, J., 1988. Geochemistry and petrogenesis of eastern Pyrenean peridotites. Geochemica et Cosmochemica Acta, 52: 2893-2907. doi: 10.1016/0016-7037(88)90156-1
      Brueckner, H.K., 1998. Sinking intrusion model for the emplacement of garnet-bearing peridotites into continental collision orogens. Geology, 26: 631-634.
      Brueckner, H.K., Medaris, L.G., 2000. A general model for the intrusion and evolution of" mantle" garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes. Journal of Metamorphic Geology, 18: 123-133. doi: 10.1046/j.1525-1314.2000.00250.x
      Brueckner, H.K., Van Roermund, H.L.M., Pearson, N.J., 2004. An Archean to Paleozoic evolution for a garnet peridotite lens with sub-baltic shield affinity within the Seve Nappe complex of Jamtland, Sweden, Central Scandinavian Caledonides. Journal of Petrology, 45: 415-437. doi: 10.1093/petrology/egg088
      Carswell, D.A., Harvey, M.A., Al-Samman, A., 1983. The petrogenesis of contrasting Fe-Ti and Mg-Cr garnet peridotite types in the high grade gneiss complex of Western Norway. Bulletin of Mineralogy, 106: 727-750. doi: 10.3406/bulmi.1983.7696
      Coltori, M., Bonadiman, C., Hinton, R. W., et al., 1999. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40: 133-165. doi: 10.1093/petroj/40.1.133
      Dalton, J.A., Wood, B.J., 1993a. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters, 119: 511-525. doi: 10.1016/0012-821X(93)90059-I
      Dalton, J.A., Wood, B.J., 1993b. The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions. Contributions to Mineralogy and Petrology, 114: 501-509. doi: 10.1007/BF00321754
      Downes, H., Macdonald, R., Upton, B.J., et al., 2004. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. Journal of Petrology, 45: 1631-1662. doi: 10.1093/petrology/egh027
      Draper, D.S., Green, T.H., 1997. P-t phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C-O-H fluid-saturated conditions. Journal of Petrology, 38: 1187-1224. doi: 10.1093/petroj/38.9.1187
      Frey, F.A., Suen, C.J., Stockman, H.W., 1985. The Ronda high temperature peridotite: Geochemistry and petrogenesis. Geochimica et Cosmochimica Acta, 49: 2469-2491. doi: 10.1016/0016-7037(85)90247-9
      Gorring, M.L., Kay, S.M., 2000. Carbonatite metasomatized peridotite xenoliths from southern Patagonia: Implications for lithospheric processes and Neogene plateau magmatism. Contributions to Mineralogy and Petrology, 140: 55-72. doi: 10.1007/s004100000164
      Griffin, W.L., Fisher, N.I., Friedman, J., et al., 1999. Crpyrope garnets in lithospheric mantle: Ⅰ. Compositional systematics and relations to tectonic setting. Journal of Petrology, 40: 679-705. doi: 10.1093/petroj/40.5.679
      Hauri, E.H., Shimizu, N., Dieu, J.J., et al., 1993. Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature, 365: 221-227. doi: 10.1038/365221a0
      Hoernle, K., Tilton, G., Le Bas, M. J., et al., 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142: 520-542. doi: 10.1007/s004100100308
      Ionov, D.A., Ashchepkov, I., Jagoutz, E., 2005. The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotie xenoliths from Vitim, Siberia. Chemical Geology, 217: 41-75. doi: 10.1016/j.chemgeo.2004.12.001
      Ionov, D. A., Bodinier, J. L., Mukasa, S. B., et al., 2002. Mechanisms and sources of mantle metasomatism: Major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. Journal of Petrology, 43: 2219-2259. doi: 10.1093/petrology/43.12.2219
      Ionov, D.A., Dupuy, C., O'Reilly, S.Y., et al., 1993. Carbonated peridotite xenoliths from Spitsbergen: Implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters, 119: 283-297. doi: 10.1016/0012-821X(93)90139-Z
      Ionov, D.A., O'Reilly, S.Y., Genshaft, Y.S., et al., 1996. Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions and trace-element residence. Contributions to Mineralogy and Petrology, 125: 375-392. doi: 10.1007/s004100050229
      Jahn, B.M., Fan, Q.C., Yang, J.J., et al., 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: Chemical and isotopic constraints. Lithos, 70: 243-267. doi: 10.1016/S0024-4937(03)00101-4
      Klemme, S., O'Neill, H.S.C., 2000. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contributions to Mineralogy and Petrology, 138: 237-248. doi: 10.1007/s004100050560
      Kogarko, L. N., Kurat, G., Ntaflos, T., 2001. Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha island, Brazil. Contributions to Mineralogy and Petrology, 140: 577-587. doi: 10.1007/s004100000201
      Laurora, A., Mazzucchelli, M., Rivalenti, G., et al., 2001. Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: The Gobernador Gregores case(southern Patagonia). Journal of Petrology, 42: 69-87. doi: 10.1093/petrology/42.1.69
      Liou, J.G., Hacker, B.R., Zhang, R.Y., 2000. Into the forbidden zone. Science, 287: 1215-1216. doi: 10.1126/science.287.5456.1215
      Liu, F.L., Xu, Z.Q., Liou, J.G., et al., 2002. Ultrahigh-P mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. European Journal of Mineralogy, 14: 499-512. doi: 10.1127/0935-1221/2002/0014-0499
      McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120: 223-254. doi: 10.1016/0009-2541(94)00140-4
      Medaris, L. G. Jr., 1999. Garnet peridotites in European high-pressure and ultrahigh-pressure terranes: A diversity of origins and thermal histories. International Geology Review, 41: 799-815.
      Medaris, L.G. Jr., Carswell, D.A., 1990. The petrogenesis of Mg-Cr garnet peridotites in European metamorphic belts. In: Carswell, D. A., ed., Eclogite facies rocks. Glasgow, Blacjie, 260-290.
      Menzies, M. A., Dupuy, C., 1991. Orogenic massif: Protolith, process and provenance. Journal of Petrology, Special Lherzolites Issue: 1-16.
      Menzies, M. A., Hawkesworth, C. J., 1987. Upper mantle processes and composition. In: Nixon, P.H., ed., Mantle xenoliths. John Wiley, Chichester, 725-738.
      Nickel, K. G., 1986. Phase equilibria in the system SiO2MgO-Al2O3-CaO-Cr2O3(SMACCR) and their bearing on spinel/garnet lherzolite relationships: Neues Jahrb. Mineralogical Abh, 155: 259-287.
      O'Neill, H.S.C., 1981. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy and Petrology, 77: 185-194. doi: 10.1007/BF00636522
      Peacock, S.M., 1990. Fluid processes in subduction zones. Science, 248: 329-337. doi: 10.1126/science.248.4953.329
      Robinson, J.A.C., Wood, B.J., 1998. The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters, 164: 277-284. doi: 10.1016/S0012-821X(98)00213-1
      Rudnick, R.L., McDonough, W.F., Chappell, B.W., 1993. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth and Planetary Science Letters, 114: 463-475. doi: 10.1016/0012-821X(93)90076-L
      Tubia, J.M., Cuevas, J., Esteban, J.J., 2004. Tectonic evidence in the Ronda peridotites, Spain, for mantle diapirism related to delamination. Geology, 32: 941-944.
      Van Roermund, H.L.M., Drury, M.R., Barnhoom, A., et al., 2001. Relict majoritic garnet microstructures from ultra-deep orogenic peridotites in western Norway. Jornal of Metamorphic Geology, 42: 117-130.
      Verhulst, A., Balaganskaya, E., Kirnarsky, Y., et al., 2000. Petrological and geochemical(trace elements and Sr-Nd isotopes)characteristics of the Paleozoic ultramafic, alkaline and carbonatite intrusion(Kola Peninsula, NW Russia). Lithos, 51: 1-25. doi: 10.1016/S0024-4937(99)00072-9
      Webb, S. A.C., Wood, B. J., 1986. Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92: 471-480. doi: 10.1007/BF00374429
      Yang, J.J., 2003. Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications. Lithos, 70: 359-379. doi: 10.1016/S0024-4937(03)00106-3
      Yang, J.J., Godard, G., Kienast, J.R., et al., 1993. Ultrahigh-pressure(60 kbar) magnesite-bearing garnet peringdotites from northeastern Jiangsu, China. Journal of Geology, 101: 541-554. doi: 10.1086/648248
      Yang, J.J., Jahn, B.M., 2000. Deep subduction of mantlederived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. Journal of Metamorphic Geology, 18: 167-180. doi: 10.1046/j.1525-1314.2000.00249.x
      Yaxley, G.M., Green, D. H., Kamenetsky, V., 1998. Carbonate metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39: 1917-1931. doi: 10.1093/petroj/39.11-12.1917
      Ye, K., Cong, B., Ye, D., 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566
      Yoshikawa, M., Nakamura, E., 2000. Geochemical evolution of the Horoman peridotite complex: Implications for melt extraction, metasomatism and compositional layering in the mantle. Journal of Geophysical Research, 105: 2879-2901. doi: 10.1029/1999JB900344
      Zanetti, A., Mazzucchelli, M., Rivalenti, G., et al., 1999. The Finero phlogopite-peridotite massif: An example of subduction-related metasomatism. Contributions to Mineralogy and Petrology, 134: 107-122. doi: 10.1007/s004100050472
      Zanetti, A., Vannucci, R., Bottazzi, P., et al., 1996. Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein. Chemical Geology, 134: 113-133. doi: 10.1016/S0009-2541(96)00080-0
      Zhang, R.Y., Hirajima, T., Banno, S., et al., 1995. Petrology of ultrahigh-pressure rocks from the southern Sulu region, eastern China. Journal of Metamorphic Geology, 13: 659-675. doi: 10.1111/j.1525-1314.1995.tb00250.x
      Zhang, R. Y., Liou, J. G., 1998. Ultrahigh-pressure metamorphism of the Sulu terrane, eastern Chian: A prospective view. Continental Dynamics, 3: 32-53.
      Zhang, R.Y., Liou, J.G., Cong, B.L., 1994. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Sulu ultrahigh-P metamorphic terrane, eastern China. Journal of Metamorphic Geology, 12: 169-186. doi: 10.1111/j.1525-1314.1994.tb00012.x
      Zhang, R.Y., Liou, J.G., Cong, B.L., 1995. Talc magnesite and Ticlinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36: 1011-1037. doi: 10.1093/petrology/36.4.1011
      Zhang, R.Y., Liou, J.G., Yang, J.S., et al., 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology, 18: 149-166. doi: 10.1046/j.1525-1314.2000.00248.x
      Zhang, R. Y., Liou, J.G., Yang, J.S., et al., 2003. Ultrahigh-pressure metamorphism in the forbidden zone: The Xugou garnet peridotite, Sulu terrane, eastern China. Jornal of Metamorphic Geology, 21: 1-12. doi: 10.1046/j.1525-1314.2003.00426.x
      Zhang, Z.M., Rumble, D., Liou, J.G., et al., 2005. Oxygen isotope geochemistry of rocks from the pre-pilot hole of the Chinese Continental Scientific Drilling project (CCSD-PPH1). American Mineralogist, 90: 857-863. doi: 10.2138/am.2005.1650
      Zheng, Y.F., Yang, J.J., Gong, B., et al., 2003. Partial equilibrium of radiogenic and stable isotope systems in garnet peridotite during ultrhigh-pressure metamorphism. American Mineralogist, 88: 1633-1643. doi: 10.2138/am-2003-11-1201
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (4384) PDF downloads(15) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return