• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 31 Issue 4
    Jul.  2006
    Turn off MathJax
    Article Contents
    OU Xin-gong, JIN Zhen-min, XIA Bin, XU Hai-jun, JIN Shu-yan, 2006. Prediction of Thermal Conductivity of Underground Rocks from P-Wave Velocity of Ultrahigh-Pressure Metamorphic Rocks. Earth Science, 31(4): 564-568.
    Citation: OU Xin-gong, JIN Zhen-min, XIA Bin, XU Hai-jun, JIN Shu-yan, 2006. Prediction of Thermal Conductivity of Underground Rocks from P-Wave Velocity of Ultrahigh-Pressure Metamorphic Rocks. Earth Science, 31(4): 564-568.

    Prediction of Thermal Conductivity of Underground Rocks from P-Wave Velocity of Ultrahigh-Pressure Metamorphic Rocks

    • Received Date: 2006-03-05
    • Publish Date: 2006-07-25
    • The relationship between thermal conductivity and ultrasonic velocity has been analyzed by using 655 samples from scientific boreholes drilled in Donghai, eastern China. The samples are classified into 4 different types: fresh eclogite, retrograde eclogite, orthogneiss and paragneiss. We established equations that enabled us to predict thermal conductivity from measuring the P-wave velocity of each type of rock. The regression analysis of thermal conductivity vs. ultrasonic velocity yields a correlation coefficient of about 0.7 for eclogite and 0.5-0.4 for gneiss. The result shows that the linear equation is sufficient to describe the relationship between thermal conductivity and ultrasonic velocity. For verifying these equations, we chose several typical lithology units of the CCSD mainhole to estimate thermal conductivity from P-wave velocity. The calculated values are consistent with the measured average value of thermal conductivity, which means these equations can be used to infer thermal conductivity for underground rocks through P-wave velocity in the Donghai region or similar area. These results are of great significance for thermal conductivity selection in thermal structure analysis or heat flow calculations.

       

    • loading
    • Burkhardt, H., Honarmand, H., Pribnow, D., 1995. Testmeasurements with a new thermal conductivity boreholetool. Tectonophysics, 244 (1-3): 161-165. doi: 10.1016/0040-1951(94)00224-W
      Chapman, D. S., 1986. Thermal gradients in the continental crust. In: Dawson, J. B., ed., The nature of the lower continental crust. Geological Society Special Publication, 24: 63-70.
      Chi, Q. H., Yan, M. C., 1998. Radioactive elements of rocks in North China platform and the thermal structure and temperature distribution of the modern continental lithosphere. ChineseJ. Geophys., 41 (1): 38-47 (in Chinese with English abstract).
      Demirci, A., Grgülü, K., Durutürk, Y. S., 2004. Thermalconductivity of rocks and its variation with uniaxial and triaxial stress. International Journal of RockMechanics and Mining Sciences, 41: 1133-1138. doi: 10.1016/j.ijrmms.2004.04.010
      Durutürk, Y. S., 1999. The variation of thermal conductivity with pressure in rocks and the investigation of its effect in underground mines. Cumhuriyet University, Sivas, Turkey, 188.
      Grgülü, K., 2004. Determination of relationships between thermal conductivity and material properties of rocks. Journal of University of Science and Technology, Beijing, 11: 297.
      Hartmann, A., Rath, V., Clauser, C., 2005. Thermal conductivity from core and well log data. International Journal of Rock Mechanics and Mining Sciences, 42: 1042-1055. doi: 10.1016/j.ijrmms.2005.05.015
      Lee, T. C., 1989. Thermal conductivity measured with a line source between two dissimilar media equals their mean conductivity. J. Geophys. Res., 94 (B9): 12443-12447. doi: 10.1029/JB094iB09p12443
      zkahraman, H. T., Selver, R., Isik, E. C., 2004. Determination of the thermal conductivity of rock from P-wave velocity. International Journal of Rock Mechanics and Mining Sciences, 41: 703-708. doi: 10.1016/j.ijrmms.2004.01.002
      Popov, Y., Tertychnyi, V., Romushkevich, R., etal., 2003. Interrelations between thermal conductivity and other physical properties of rocks: Experimental data. PureAppl. Geophys., 160: 1137-1161.
      Pribnow, D., Williams, C. F., Burkhardt, H., 1993. Well logderived estimates of thermal conductivity in crystalline rocks penetrated by the 4 km deep KTB Vorbohrung. Geophys. Res. Lett., 20 (12): 1155-1158. doi: 10.1029/93GL00480
      Prinow, D., Sass, J. H., 1995. Determination of thermal conductivity for deep boreholes. J. Geophs. Res., 100: 9981-9994. doi: 10.1029/95JB00960
      Sass, J. H., Lachenbruch, A. H., Moses, T. H., 1992. Heat flow from a scientific research well at Cajon Pass, California. J. Geophys. Res., 97 (B4): 5017-5030. doi: 10.1029/91JB01504
      Seipold, U., Raab, S., 2000. A Method to measure thermal conductivity and thermal diffusivity under pore and confining pressure. Phys. Chem. Earth., 25 (2): 183-187.
      Shen, X. J., Yang, S. Z., Shen, J. Y., 1995. Heat flow study and analysis along the Golmud-Ejinaqi geotransect. Chinese J. Geophys., 38 (Suppl. II): 86-97 (in Chinese with English abstract).
      Silliman, S. E., Neuzil, C. E., 1990. Borehole determination of formation thermal conductivity using a thermal pulse frominjected fluid. J. Geophys. Res., 95 (B6): 8697-8704. doi: 10.1029/JB095iB06p08697
      Singh, T. N., Sinha, S., Singh, V. K., 2006. Prediction of thermal conductivity of rock through physico-mechanical properties. Building and Environment (in press).
      Williams, C. F., Anderson, R. N., Broglia, C., etal., 1988. In situinvestigations of thermal conductivity, heat production, and hydrothermal circulation in the Cajon Pass scientific drillhole, California. Geophys. Res. Lett., 15 (9): 985-988. doi: 10.1029/GL015i009p00985
      迟清华, 鄢明才, 1998. 华北地台岩石放射性元素与现代大陆岩石圈热结构和温度分布. 地球物理学报, 41 (1): 38-47. doi: 10.3321/j.issn:0001-5733.1998.01.005
      沈显杰, 杨淑贞, 沈继英, 1995. 格尔木-额济纳旗地学断面热流分析与研究. 地球物理学报, 38 (增Ⅱ): 86-97.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(2)

      Article views (4089) PDF downloads(18) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return