• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 32 Issue 1
    Jan.  2007
    Turn off MathJax
    Article Contents
    XIONG Xiong, WANG Ji-ye, TENG Ji-wen, 2007. Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau. Earth Science, 32(1): 1-6.
    Citation: XIONG Xiong, WANG Ji-ye, TENG Ji-wen, 2007. Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau. Earth Science, 32(1): 1-6.

    Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau

    • Received Date: 2006-03-28
    • Publish Date: 2007-01-25
    • The principle prerequisite for the formation of a volcano is the generation of a channel for magma transportation. There is little research on the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan Plateau.Based on the subcrustal mantle convection-generated stress field inversed by gravity anomalies, together with its relationship to the Cenozoic volcanism in the plateau, and the mechanism of crustal fracture formation, as well as the numerical results of the evolution of mantle convection beneath the plateau, this paper investigates the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan Plateau. There are two significant extensional convection-generated stress zones beneath the plateau, in which the volcanic rocks in the central and northern parts of the plateau are distributed. The Linzizong volcanism in southern Tibet correlates the upwelling mantle flow prior to the India-Asia collision or during the early stage of the collision. The magnitude of the stress is ~ 100 MPa, which is the same order of force that causes crustal fractures. The evidence implies that the mantle convection-generated stress is one of the principle causes of crustal fractures, and furthermore, the formation of the magma transportation channel in the Tibetan Plateau.

       

    • loading
    • Anderson, O. L., Grew, P. C., 1977. Stress corrosion theoryof crack propagation with applications to geophysics. Rev. Geophys. Space Phys. , 15 (1): 77-104. doi: 10.1029/RG015i001p00077
      Arnaud, N. O., Vidal, P., Tapponnier, P., et al., 1992. The high K2O volcanismof northwestern Tibet: Geochemistry and tectonic implications. Earth Planet. Sci. Lett. , 111: 351-367. doi: 10.1016/0012-821X(92)90189-3
      Curtis, A., Woodhouse, J. H., 1997. Crust and upper mantle shear velocity structure beneath the Tibetan Plateau and surrounding regions frominterevent surface wave velocity inversion. J. Geophys. Res. , 102 (B6): 11789-11813. doi: 10.1029/96JB03182
      Deng, W. M., 1991. Geology geochemistry and age of shoshonitic lavas in the central Kunlun orogenic belt. Scientia Geologica Sinica, (3): 201-213 (in Chinese with English abstract).
      Deng, W. M., Zheng, X. L., Matsumoto, Y., 1996. Petrological characteristics and ages of Cenozoic volcanic rocks from the Hoh Xil Mts., Qinghai Province. Acta Petrologica et Mineralogica, 15 (4): 289-297 (in Chinese with English abstract).
      Ding, L., Kapp, P., Zhong, D. L., 2003. Cenozoic volcanism in Tibet: Evidence for a transition fromo ceanic to continental subduction. J. Petrology, 44 (10): 1833-1865. doi: 10.1093/petrology/egg061
      Dricker, I. G., Roecker, S. W., 2002. Lateral heterogeneity in the upper mantle beneath the Tibetan Plateau and its surroundings from SS-S travel time residuals. J. Geophys. Res., 107 (B11): 2305, doi: 10.1029/2001JB000797.
      Fu, R. S., Huang, J. H., Liu, W. Z., 1994. Correlation equation between regional gravity isostatic anomalies and small scale convection in the upper mantle. Chinese Journal of Geophysics, 37: 638-646 (in Chinese withEnglish abstract).
      Fu, R. S., Huang, J. H., Wei, Z. X., 1996. The upper mantle flow beneth the North China platform. Pageoph. , 146 (4): 649-659.
      Fu, R. S., Huang, J. H., Xiong, X., 1997. Evolution of the upper mantle flow under the Tibetan Plateau. In: Hsu, H. T., Ning, J. S., Wang, J. H., et al., eds., Proceedings of international symposium on current crustal movement and hazard reductionin East Asia and Southeast Asia. Seismological Press, Beijing, 405-417.
      Fu, R. S., Huang, J. H., Xu, Y. M., 1998. Study of the mantle dynamics of the lithosphere movements in the region from Qinghai-Xizang Plateau to Tianshan Mountain. Chinese Journal of Geophysics, 41: 658-668 (in Chinese with English abstract).
      Gao, R., Huang, D. D., Lu, D. Y., et al., 2000. Deep seismic reflection profile crossing western Kunlun-Tarim contacting belt. Chinese Science Bulletin, 45 (17): 1874-1879 (in Chinese). doi: 10.1360/csb2000-45-17-1874
      Hong, H. J., Yu, Y., Zheng, X. Z., 2003. Global volcano distribution: Pattern and variation. Earth Science Frontiers, 10 (special issue): 11-16 (in Chinese with Eng-lish abstract).
      Huang, P. H., Fu, R. S., 1983. Investigation on mantle convection pattern at thelithospheric bottomin China. Chinese Journal of Geophysics, 26 (1): 39-47 (in Chinese with English abstract).
      Li, G. M., 2000. Petrological features and genesis of Cenozoic volcanic rocks, Qiangtang area, northern Tibetan Plateau. Geology Geochemistry, 28 (2): 38-44 (in Chinesewith English abstract).
      Li, Q. S., Lu, D. Y., Gao, R., et al., 2000. Exploration seismic sounding crossing western Kunlun-Tarim contacting belt. Science in China (Series D), 30 (Suppl. ): 16-21 (in Chinese).
      Liu, H. S., 1985. Geodynamical basis for crustal deformation under the Tibetan Plateau. Phys. Earth Planet. Inter. , 40: 43-60. doi: 10.1016/0031-9201(85)90004-4
      Liu, S., Chi, X. G., Li, C., et al., 2001. Geochemistry and origin of the Cenozoic volcanic rocks series inthe northern Tibet. J. Changchun Univ. of Science and Technology, 31 (3): 230-234 (in Chinese with English abstract).
      McKenna, L. W., Walker, J. D., 1990. Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh area, northern Tibet, and their implications for the formation of the Tibetan Plateau. J. Geophys. Res. , 95: 21483-21502. doi: 10.1029/JB095iB13p21483
      McNamara, D. E., Walter, W. R., Owens, T. J., et al., 1997. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. J. Geophys. Res. , 102 (B1): 493-505. doi: 10.1029/96JB02112
      Molnar, P., 1988. Areviewof geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implication. Phil. Trans. R. Soc. Lond. , A326: 33-88.
      Molnar, P., Burchfiel, B. C., Zhao, Z., et al., 1987. The geologic evolution of northern Tibet: Results of an expedition to Ulugh Muztagh. Science, 235: 299-305. doi: 10.1126/science.235.4786.299
      Molnar, P., England, P., Mantinod, J., 1993. Mantle dynamics, uplift of Tibetan Plateau and the Indian monsoon. Rev. of Geophys., 37 (4): 357-396.
      Owens, T. J., Zandt, G., 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387: 37-43. doi: 10.1038/387037a0
      Pan, G. T., Wang, P. S., Xu, Y. R., et al., 1990. Cenozoic tectonic evolution of the Tibetan Plateau. Geological Publishing House, Beijing, 32-70 (in Chinese).
      Rittmann, A., 1962. Volcanoes and their activity. Wiley, New York, 305.
      Runcorn, S. K., 1964. Satellite gravity measurements and laminar viscous flow model of the earth's mantle. J. Geophys. Res. , 69: 4389-4394. doi: 10.1029/JZ069i020p04389
      Runcorn, S. K., 1967. Flowin the mantle inferred from the low degree harmonics of the geopotential. Geophys. J. R. Astr. Soc. , 14: 375-384.
      Turner, S., Hawkesworth, C., Liu, J., et al., 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50-54. doi: 10.1038/364050a0
      Xiong, X., Teng, J. W., 2002. Study on crustal movemenand deep process in eastern Qinghai-Xizang Plateau. Chinese Journal of Geophysics, 45 (4): 507-515.
      Xu, Y., Liu, F. T., Liu, J. H., et al., 2002. Crust and upper mantle structure beneath western China from P wave travel time tomography. J. Geophys. Res. , 107 (B10): 2220, doi: 10.1029/2001JB000402.
      邓万明, 1991. 中昆仑造山带钾玄质火山岩地质、地球化学和时代. 地质科学, (3): 201-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199103000.htm
      邓万明, 郑锡澜, 松本征夫, 1996. 青海可可西里地区新生代火山岩的岩石特征与时代. 岩石矿物学杂志, 15 (4): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW604.000.htm
      傅容珊, 黄建华, 刘文忠, 1994. 区域重力异常和上地幔小尺度对流相关方程. 地球物理学报, 37: 638-646. doi: 10.3321/j.issn:0001-5733.1994.05.010
      傅容珊, 黄建华, 徐耀民, 等, 1998. 青藏高原-天山地区岩石层构造运动的地幔动力学机制. 地球物理学报, 41: 658-668. doi: 10.3321/j.issn:0001-5733.1998.05.009
      高锐, 黄东定, 卢德源, 等, 2000. 横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面. 科学通报, 45 (17): 1874-1879. doi: 10.3321/j.issn:0023-074X.2000.17.015
      洪汉净, 于泳, 郑秀珍, 等, 2003. 全球火山活动分布特征. 地学前缘, 10 (特刊): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1003.htm
      黄培华, 傅容珊, 1983. 中国岩石层底面地幔对流状态的探讨. 地球物理学报, 26 (1): 39-47. doi: 10.3321/j.issn:0001-5733.1983.01.005
      李光明, 2000. 藏北羌塘地区新生代火山岩岩石特征及其成因探讨. 地质地球化学, 28 (2): 38-44. doi: 10.3969/j.issn.1672-9250.2000.02.006
      李秋生, 卢德源, 高锐, 等, 2000. 横跨西昆仑-塔里木接触带的爆炸地震探测. 中国科学(D辑), 30 (增刊): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1002.htm
      刘桑, 迟效国, 李才, 等, 2001. 藏北新生代火山岩系列的地球化学及成因. 长春科技大学学报, 31 (3): 230-234. doi: 10.3969/j.issn.1671-5888.2001.03.006
      潘桂棠, 王培生, 徐耀荣, 等, 1990. 青藏高原新生代构造演化. 北京: 地质出版社, 32-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (4284) PDF downloads(35) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return