• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 33 Issue 5
    Sep.  2008
    Turn off MathJax
    Article Contents
    SHI Xiao-ying, JIANG Gan-qing, ZHANG Chuan-heng, LIU Juan, GAO Lin-zhi, 2008. Sand Veins and Microbially Induced Sedimentary Structures from the Black Shale of the Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) in North China: Implications for Methane Degassing from Microbial Mats. Earth Science, 33(5): 577-590.
    Citation: SHI Xiao-ying, JIANG Gan-qing, ZHANG Chuan-heng, LIU Juan, GAO Lin-zhi, 2008. Sand Veins and Microbially Induced Sedimentary Structures from the Black Shale of the Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) in North China: Implications for Methane Degassing from Microbial Mats. Earth Science, 33(5): 577-590.

    Sand Veins and Microbially Induced Sedimentary Structures from the Black Shale of the Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) in North China: Implications for Methane Degassing from Microbial Mats

    • Received Date: 2008-02-27
    • Publish Date: 2008-09-25
    • The Mesoproterozoic Chuanlinggou Formation (ca. 1.7Ga) consists of up to 900m thick, dark-gray to black shale and fine-grained sandstone that are widespread in the North China platform. Abundant centimeter-scale sand veins are present within the black shale layers of this unit, particularly in the central part. Sand veins display ptygmatic shapes, perpendicular or with a high angle to sedimentary bedding. They penetrate the black shale layers but are vertically discontinuous and often terminated by thin, lenticular sandstone beds, forming small-scale 'tepee-like' structures. On bedding planes, sand veins are expressed as small sand ridges with 1-3mm positive relief. Lack of polygonal shapes and their occurrence in thinly laminated, deep-water shale prevent an origin from sand-filled desiccation cracks. Instead, their close association with microbially induced sedimentary structures (MISS), such as micro-wrinkles and gas blisters, and putative bacteria fossils (possibly coccoidal cyanobacteria) and framboidal pyrites, suggests that they were formed by degassing of methane from microbial mat decay. Methane gas disrupted overlying sedimentary layers, creating fractures open to seawater. Fine-grained quartz sands, which were transported into the depositional environment by storm events, filled the open fractures. Sand-filled fractures were shortened and deformed during burial compaction, forming ptygmatic shapes. The presence of dispersed dolomite and siderite in these sand veins suggests authigenic carbonate precipitation from anaerobic oxidation of methane (AOM). Sand veins are mainly distributed within the Chuanlinggou Formation and are spatially widespread in the North China platform. If their methane origin is confirmed, they may have important implications for the Mesoproterozoic plaeoclimate. With a low seawater sulfate concentration during the Mesoproterozoic, methane release from microbial mat decay and/or microbial methanogenesis during shallow burial may have been proportionally higher than that of the modern marine environments, with resultant increase in the relative importance of methane in maintaining the Mesoproterozoic greenhouse climate.

       

    • loading
    • Anbar, A. D., Knoll, A. H., 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science, 297 (5584): 1137-1142. doi: 10.1126/science.1069651
      Bishop, J. W., Sumner, D. Y., Huerta, N. J., 2006. Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South AfricaⅡ: A wave-induced fluid flow model. Sedimentology, 53 (5): 1069-1082. doi: 10.1111/j.1365-3091.2006.00802.x
      Brocks, J. J., Love, G. D., Summons, R. E., et al., 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437 (7060): 866-870. doi: 10.1038/nature04068
      Canfield, D. E., 2005. The early history of at mospheric oxygen: Homage to Robert A. Garrels. Annu. Rev. Earth Pl. Sc., 33: 1-36. doi: 10.1146/annurev.earth.33.092203.122711
      Catling, D. C., Claire, M. W., 2005. How earth′s at mosphere evolved to an oxic state: A status report. Earth Planet Sc. Lett., 237 (1-2): 1-20. doi: 10.1016/j.epsl.2005.06.013
      Catling, D. C., Claire, M. W., Zahnle, K. J., 2007. Anaerobic methanotrophy and the rise of at mospheric oxygen. Philosl. Trans. Roy. Soc. A., 365 (1856): 1867-1888. doi: 10.1098/rsta.2007.2047
      Chen, J. B., Zhang, H. M., Zhu, S. X., et al., 1980. Study of the sinian suberathem of Jixian. The sinian suberathem of China. Science and Technology Press, Tianjin, 55-109 (in Chinese).
      Chu, X., Zhang, T., Zhang, Q., et al., 2004. Carbon isotopic variations of Proterozoic carbonates in Jixian, Tianjin, China. Science in China (Ser. D), 47 (2): 160-170.
      Claire, M. W., Catling, D. C., Zahnle, K. J., 2006. Biogeochemical modelling of the rise in at mospheric oxygen. Geobiology, 4 (4): 239-269. doi: 10.1111/j.1472-4669.2006.00084.x
      Corsetti, F. A., Grotzinger, J. P., 2005. Origin and significance of tube structures in neoproterozoic post-glacial cap Carbonates: Example from noonday dolomite, death valley, United States. Palaios, 20 (4): 348. doi: 10.2110/palo.2003.p03-96
      Eriksson, P. G., Schieber, J., Bouougri, E., et al., 2007. Classification of structures left by microbial mats in their host sedi ments. In: Schiber, J., Bose, P. K., Eriksson, P. G., et al., eds., Atlas of microbial mat features preserved with the clastic rock record. Elsevier, Amsterdam, 39-52.
      Fairchild, I. J., Einsele, G., Song, T. R., 1997. Possible seismic origin of molar-tooth structures in Neoproterozoic carbonate ramp deposits, North China. Sedimentology, 44 (4): 611-636. doi: 10.1046/j.1365-3091.1997.d01-40.x
      Fraiser, M. A., Corsetti, F. R., 2003. Neoproterozoic carbonate shrubs: Interplay of microbial activity and unusual environmental conditions in Post-Snowball earth oceans. Palaios, 18 (4-5): 378-387. doi: 10.1669/0883-1351(2003)018<0378:NCSIOM>2.0.CO;2
      Frank, T. D., Lyons, T. W., 1998. "Molar-tooth" structures: A geochemical perspective on a Proterozoic enigma. Geology, 26 (8): 683-686. doi: 10.1130/0091-7613(1998)026<0683:MTSAGP>2.3.CO;2
      Furniss, G., Rittel, J. F., Winston, D., 1998. Gas bubble and expansion crack origin of "molar-tooth" calcite structures in the Middle Proterozoic belt supergroup, western Montana. J. Sediment. Res., 68 (1): 104-114. doi: 10.2110/jsr.68.104
      Gao, L., Zhang, C., Shi, X., et al., 2007. A new SHRIMP age of the Xiamaling Formation in the North China plate and its geological significance. Acta Geologica Sinica, 81 (6): 1103-1108. doi: 10.1111/j.1755-6724.2007.tb01032.x
      Gerdes, G., Klenke, T., Noffke, N., 2000. Microbial signatures in peritidal siliciclastic sediments: A catalogue. Sedimentology, 47 (2): 279-308.
      Gerdes, S., 2007. Structures left by modern microbial mats in their host sediments. In: Schiber, J., Bose, P. K., Eriksson, P. G., et al., eds., Atlas of microbial mat features preserved with the clastic rock record. Elsevier, Amsterdam, 5-38.
      Gradstein, F. M., Ogg, J. G., Smith, A. G., et al., 2004. A geological time scale 2004. Episodes, 27 (2): 1-11.
      Hoff man, P. F., Kauf man, A. J., Halverson, G. P., et al., 1998. A neoproterozoic snowball earth. Science, 281 (5381): 1342-1346. doi: 10.1126/science.281.5381.1342
      Hoff man, P. F., Schrag, D. P., 2002. The snowball earth hypothesis: Testing the limits of global change. Terra Nova, 14 (3): 129-155. doi: 10.1046/j.1365-3121.2002.00408.x
      Holland, H. D., 2006. The oxygenation of the atmosphere and oceans. Phil. Trans. Roy. Soc. B-Biol. Sci., 361 (1470): 903-915. doi: 10.1098/rstb.2006.1838
      James, N. P., Narbonne, G. M., Sherman, A. G., 1998. Molartooth carbonates: Shallow subtidal facies of the mid-to Late Neoproterozoic. J. Sediment. Res., 68 (5): 716-722. doi: 10.2110/jsr.68.716
      Jiang, G., Kennedy, M. J., Christie-blick, N., 2003. Stable isotopic evidence for methane seepsin Neoproterozoic postglacial cap carbonates. Nature, 426 (6968): 822-826. doi: 10.1038/nature02201
      Jiang, G., Shi, X., Zhang, S., 2006. Methane seeps, methane hydrate destabilization, and the Late Neoproterozoic postglacial cap carbonates. Chinese Sci. Bull., 51 (10): 1152-1173. doi: 10.1007/s11434-006-1152-y
      Kah, L. C., Riding, R., 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35 (9): 799-802. doi: 10.1130/G23680A.1
      Kasting, J. F., 2004. When methane made climate. Sci. Am., 291 (1): 78-85. doi: 10.1038/scientificamerican0704-78
      Kasting, J. F., Catling, D., 2003. Evolution of a habitable planet. Annu. Rev. Astron. Astr., 41: 429-463. doi: 10.1146/annurev.astro.41.071601.170049
      Kasting, J. F., Howard, M. T., Wall mann, K., et al., 2006. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sc. Lett., 252 (1-2): 82-93. doi: 10.1016/j.epsl.2006.09.029
      Kauf man, A. J., Xiao, S., 2003. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature, 425: 279-282. doi: 10.1038/nature01902
      Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., et al., 2000. Paleoproterozoic snowball earth: Extreme climatic and geochemical global change and its biological consequences. P. Natl. Acad. Sci. U. S. A., 97 (4): 1400-1405. doi: 10.1073/pnas.97.4.1400
      Knauth, L. P., 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219 (1-2): 53-69. doi: 10.1016/j.palaeo.2004.10.014
      Knoll, A. H., 2003. The geological consequences of evolution. Geobiology, 1 (1): 3-14. doi: 10.1046/j.1472-4669.2003.00002.x
      Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., et al., 2005. The Paleoproterozoic snowball earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. P. Natl. Acad. Sci. U. S. A., 102 (32): 11131-11136. doi: 10.1073/pnas.0504878102
      Li, C., Yan, Y. Z., 2001. Characteristics of the biomarkers in the Proterozoic, Jixian. Earth Science Frontiers, 8 (4): 453-462 (in Chinese with English abstract).
      Li, H. K., Li, H. M., Lu, S. N., 1995. The SHRIMP age for the Tuanshanzi Formation of the Changcheng system and its significance. Chin. Jour. Geochem., 24 (1): 43-51 (in Chinese with English abstract).
      Liu, H. F., Liu, C. Y., 1992. The oldest possible metazoan trace fossils discovered from the Chuanlinggou Formation of the Changcheng System, Jixian. Journal ofNorthwest University (Natural Science Edition), 22 (3): 268-270 (in Chinese with English abstract).
      Liu, W. F., Meng, X. H., Ge, M., et al., 2004. Origin of the Neoproterozoic molar-tooth carbonates in the Xuzhou-Huainan area. Geological Review, 50 (5): 454-463 (in Chinese with English abstract).
      Liu, Y. Q., Gao, L. Z., Liu, Y. X., 2005. Neoproterozoic molar-tooth structure and constraint of depositional facies and environment in the North China platformin Jiangsu, Anhui and Liaoning, eastern China. Acta Geologica Sinica, 79 (4): 533-539. doi: 10.1111/j.1755-6724.2005.tb00919.x
      Lu, S. N., 1998. Discussion on some problems in the geochronologic subdivision of the Proterozoic in China. Progress in Precambrian Research, 21 (4): 1-9 (in Chinese with English abstract).
      Lu, S., Yang, C., Li, H., et al., 2002. A group of rifting events in the terminal Paleoproterozoic in the North China craton. Gondawana Research, 5 (1): 123-131. doi: 10.1016/S1342-937X(05)70896-0
      Marshall, D., Anglin, C. D., 2004. CO2-clathrate destabilization: A new model of formation for molar tooth structures. Precambrian Res., 129 (3-4): 325-341. doi: 10.1016/j.precamres.2003.10.007
      Mei, M. X., 2006. Origin of molar-tooth structure based on sequence-stratigraphic position and macroscopic features: Example from Mesoproterozoic Gaoyuzhuang Formation at Jixian Section, Tianjin, North China. Journal of China University of Geosciences, 17 (3): 201-208.
      Mei, M. X., 2007. Implications of the Precambrian non-stromatolitic carbonate succession making up the third member of mesoproterozoic Gaoyuzhuang Formation in Yanshan area of North China. Earth Science—Journal of China University of Geosciences, 18 (3): 191-209. doi: 10.1016/S1002-0705(08)60001-1
      Meng, X. H., Ge, M., Kuang, H. W., 2006. Origin of Microsparite carbonates and the significance in the evolution of the earth in Proterozoic. Acta Petrologica Sinica, 22 (8): 2133-2143 (in Chinese with English abstract).
      Meng, X. H., Ge, M., 2002. The sedimentary features of Proterozoic microspar (Molar-tooth) carbonates in China and their significance. Episodes, 25 (3): 185-196. doi: 10.18814/epiiugs/2002/v25i3/003
      Meng, X. H., Ge, M., Liu, Y. X., et al., 2004. Molar-tooth carbonate sequences and Sr isotopes in the Neoproterozoic for stratigraphic correlation: Research in the Jilin, Liaoning, Xuzhou, Huaiyang areas of the Sino-Korean plate and its correlation with the Yangtze plate. ActaGeologica Sinica, 78 (3): 775-783.
      Niu, S. W., 2002. Study of the macroalgal fossils from the Middle and Late Proterozoic of the Yan-Liao area, North China. Progress in Precambrian Research, 25 (1): 28-35 (in Chinese with English abstract).
      Noffke, N., Gerdes, G., Klenke, T., et al., 2001. Microbially induced sedi mentary structures: A new category within the classification of pri mary sedi mentary structures. Palaios, 71: 649-656.
      Noffke, N., Gerdes, G., Klenke, T., 2003. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporiticsalty, and evaporitic carbonatic). Earth Science Reviews, 62 (1-2): 163-176. doi: 10.1016/S0012-8252(02)00158-7
      Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., et al., 2003. Methane-rich proterozoic at mosphere? Geology, 31 (1): 87-90. doi: 10.1130/0091-7613(2003)031<0087:MRPA>2.0.CO;2
      Pavlov, A. A., Kasting, J. F., Brown, L. L., et al., 2000. Greenhouse warming by CH4 in the at mosphere of early earth. Journal of Geophysical Research, 105 (E5): 11981-11990. doi: 10.1029/1999JE001134
      Peckmann, J., Goedert, J. L., 2005. Geobiology of ancient and modern methane-seeps. Palaeogeography, Palaeocli matology, Palaeoecology, 227 (1-3): 1-5. doi: 10.1016/j.palaeo.2005.02.016
      Peckmann, J., Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chem. Geol., 205 (3-4): 443-467. doi: 10.1016/j.chemgeo.2003.12.025
      Peng, Y. B., Wang, D., Yuan, X. L., 2007. Ultrastructure of spheroidal acritarchs from the Chuanlinggou Formation of the Changcheng System. Acta Micropaleontologica Sinica, 24 (2): 194-204. (in Chinese with English ab-stract).
      Pflüger, F., Gresse, P. G., 1996. Microbial sand chips—A non-actualistic sedimentary structure. Sediment. Geol. 102 (3-4): 263-271. doi: 10.1016/0037-0738(95)00072-0
      Pierre, C., Fouquet, Y., 2007. Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo-Mar. Lett., 27 (2): 249-257.
      Pollock, M. D., Kah, L. C., Bartley, J. K., 2006. Morphology of molar-tooth structures in Precambrian carbonates: Influence of substrate rheology and implications for gene-sis. J. Sediment. Res., 76 (2): 310-323. doi: 10.2110/jsr.2006.021
      Porada, H., Hafid, B. E., 2007. Wrinkle structures—A critical review. Earth Science Reviews, 81 (3-4): 199-215. doi: 10.1016/j.earscirev.2006.12.001
      Pratt, B. R., 1998a. Molar-tooth structure in Proterozoic carbonate rocks: Origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment. Geol. Soc. Am. Bull., 110 (8): 1028-1045. doi: 10.1130/0016-7606(1998)110<1028:MTSIPC>2.3.CO;2
      Pratt, B. R., 1998b. Syneresis cracks: Subaqueous shrinkage in argillaceous sediments caused by earthquake induced dewatering. Sediment. Geol., 117 (1-2): 1-10. doi: 10.1016/S0037-0738(98)00023-2
      Qiao, X. F., Gao, L. Z., 2007. Mesoproterozoic seismic events and paleogeography in the Yanliao Aulagogen. Journal of Paleogeography, 9 (4): 337-352 (in Chinese with English abstract).
      Qiao, X. F., Song, T. R., Gao, L. Z., 1994. Seismic sequences in carbonate rocks by vibrational liquefaction. Acta Geologica Sinica, 7 (2): 243-265.
      Qiao, X. F., Gao, L. Z., 1999. Mesoproterozoic, Neoproterozoic and early Paleozoic earthquake events in North China and its relationship with supercontinental Rodinia. Chinese Sci. Bull., 44 (16): 1753-1757. doi: 10.1360/csb1999-44-16-1753
      Reitner, J., Peckmann, J., Rei mer, A., et al., 2005. Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Cri mean shelf (Black Sea). Facies, 51 (1): 66-79.
      Riding, R., 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-cambrian changes in at mospheric composition. Geobiology, 4 (4): 299-316. doi: 10.1111/j.1472-4669.2006.00087.x
      Robert, F., Chaussidon, M., 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443 (7114): 969-973. doi: 10.1038/nature05239
      Rogers, J. J., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res., 5 (1): 5-22. doi: 10.1016/S1342-937X(05)70883-2
      Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton. GondwanaRes., 10 (3-4): 256-266.
      Sarkar, S., Banerjee, S., Samanta, P., et al., 2006. Microbial mat-induced sedimentary structures in siliciclastic sediments: Examples from the 1.6 Ga chorhat sandstone, vindhyan supergroup, MP, India. Journal of Earth System Science, 115 (1): 49-58. doi: 10.1007/BF02703025
      Schieber, J., 2004. Microbial mats in the silisiclastic rock record: A summary of the diagnostic features. In: Eriksson, P. G., Altermann, W., Nelson, D. R., et al., eds., The precambrian earth: Tempos and events. Elsevier, Amsterdam, 12: 663-673.
      Schieber, J., 1999. Microbial mats in terrigenous clastics, the challenge of identification in the rock record. Palaios, 14 (1): 3-12. doi: 10.2307/3515357
      Seilacher, A., 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14 (1): 86-93. doi: 10.2307/3515363
      Sheldon, N. D., 2006. Precambrian paleosols and at mospheric CO2 levels. Precambrian Res., 147 (1-2): 148-155. doi: 10.1016/j.precamres.2006.02.004
      Shi, X. Y., Chen, C. Q., 2006. Microbially in duced sedimentary structures (MISS) from the Changcheng Group (Pt2, ca. 1.6 Ga), North China platform, and their implications for an oxygen-defficienct shallowsea environment. In: Yang, Q., Weldon, E. A., Wang, Y. D., eds., Ancient life and modern approaches. University of Science and Technology of China Press, Hefei, 188-189.
      Shields, A. S., 2002. Molar-tooth microspar: A chemical explanation for its disappearance—700 Ma. Terra Nova, 14 (2): 108-113. doi: 10.1046/j.1365-3121.2002.00396.x
      Song, T. R., 2007. The sedimentary facies indicators and depositional environmental model for the Mesoproterozoic Changcheng systemin the Shisanling area, Beijing. Journal of Paleogeography, 9 (5): 461-472 (in Chi-nese with English abstract).
      Song, T. R., He, Z. J., Ding, X. Z., 2000. A study of geological event records in the Proterozoic Chuanlinggou Formation of the Ming Tombs district, Beijing. Geological Review, 46 (4): 400-406 (in Chinese with English abstract).
      Sun, S. F., Zhu, S. X., 2000. Palaeoproterozoic eukaryotic fossils from North China. Acta Geol. Sinica, 74 (2): 116-122 (in Chinese with English abstract).
      Sun, S. F., Zhu, S. X., Huang, X. G., et al., 2004. Discovery of Parachuaria fossils from the Chuanlinggou Formationin the Changcheng System, Yanshan region and its significance. Acta Geologica Sinica, 78 (6): 721-725 (in Chinese with English abstract).
      Wang, H., Wang, H. J., Chen, T., et al., 2005. Study of two-dimensional nanometer illite in Jixian County, Tianjin City. Geological Review, 51 (3): 319-324 (in Chinese with English abstract).
      Wang, J., Chen, J. F., Dou, Q. L., 2004. Evaluation of the hydrocarbon-generating potential the Middle-Upper Proterozoic in North China. Petroleum Geology and Experiment, 26 (2): 206-211 (in Chinese with English abstract).
      Wang, J., Jiang, G., Xiao, S., et al., 2008. Carbonisotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in South China. Geology, 36 (5): 347-350. doi: 10.1130/G24513A.1
      Wu, T. S., 2002. Late Precambrian (Meso- to Neoproterozoic) lithostratigraphic units in North China and their multiple division and correlation. Geology in China, 29 (2): 147-154 (in Chinese with English abstract).
      Xu, D. B., Wang, D. Z., Bai, Z. D., et al., 2002. Sedimentary environment and facies model of the Mesoproterozoic Chuanlinggou Formation in the Xinglong area, Hebei. Geology in China, 29 (2): 167-171 (in Chinese with English abstract).
      Yan, Y. Z., Liu, Z. L., 1998. Discussion on the relationships between bio-community and paleoenvironment in the Mesoproterozoic Changcheng System, Yanshan area, North China. Acta Micropaleontologia Sinica, 15 (3): 249-266 (in Chinese with English abstract).
      Zhang, Q. D., Song, T. R., He, Z. J., et al., 2002. Pb-Pb Age determination of Meso- to Neoproterozoic carbonates in the Ming Tombs district, Beijing. Geologocal Review, 48 (4): 416-423 (in Chinese with English abstract).
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: Records in the North China craton. Gondwana Res., 6 (3): 417-434. doi: 10.1016/S1342-937X(05)70996-5
      Zhu, S. X., Xing, Y. S., Zhang, P. Y., et al., 1994. Biostratigraphic succession in the Meso- and Neoproroterozoic of North China platform. Geological Publishing House, Beijing, 119-125 (in Chinese).
      陈晋镳, 张惠民, 朱士兴, 等, 1980. 蓟县震旦亚界研究. 中国震旦亚界. 天津: 科学技术出版社, 1-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197803003.htm
      李超, 阎玉忠, 2001. 蓟县剖面元古宙沉积物(1.8-0.85 Ga) 中的生物标志化合物特征. 地学前缘, 8 (4): 453-462. doi: 10.3321/j.issn:1005-2321.2001.04.029
      李怀坤, 李惠民, 陆松年, 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义. 地球化学, 24 (1): 43-48. doi: 10.3321/j.issn:0379-1726.1995.01.004
      刘洪福, 刘池洋, 1992. 蓟县中元古界长城群串岭沟组中发现最古老的后生动物遗迹化石. 西北大学学报(自然科学版), 22 (3): 268-270. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ199203005.htm
      刘为付, 孟祥化, 葛铭, 等, 2004. 徐州-淮南地区新元古代臼齿碳酸盐岩成因探讨. 地质论评, 50 (5): 454-463. doi: 10.3321/j.issn:0371-5736.2004.05.002
      陆松年, 1998. 关于中国元古宙地质年代划分几个问题的讨论. 前寒武纪研究进展, 21 (4): 1-9. doi: 10.3969/j.issn.1672-4135.1998.04.001
      孟祥化, 葛铭, 旷红伟, 2006. 微亮晶(臼齿) 碳酸盐成因及其在元古宙地球演化中的意义. 岩石学报, 22 (8): 2133-2143. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608002.htm
      牛绍武, 2002. 燕辽地区中、晚元古代宏观藻类化石研究. 前寒武纪研究进展, 25 (1): 28-35. doi: 10.3969/j.issn.1672-4135.2002.01.004
      彭永波, 王丹, 袁训来, 2007. 长城系串岭沟组球形疑源类的超微结构. 微体古生物学报, 24 (2): 194-204. doi: 10.3969/j.issn.1000-0674.2007.02.005
      乔秀夫, 高林志, 2007. 燕辽裂陷槽中元古代古地震与古地理. 古地理学报, 9 (4): 337-352. doi: 10.3969/j.issn.1671-1505.2007.04.001
      宋天锐, 2007. 北京十三陵地区中元古界长城系沉积相标志及沉积环境模式. 古地理学报, 9 (5): 461-472. doi: 10.3969/j.issn.1671-1505.2007.05.004
      宋天锐, 和政军, 丁孝忠, 等, 2000. 北京十三陵中元古代串岭沟期地质事件的探索. 地质论评, 46 (4): 400-406. doi: 10.3321/j.issn:0371-5736.2000.04.008
      孙淑芬, 朱士兴, 2000. 华北地区古元古代真核生物化石. 地质学报, 74 (2): 116-122. doi: 10.3321/j.issn:0001-5717.2000.02.003
      孙淑芬, 朱士兴, 黄学光, 等, 2004. 燕山长城系串岭沟组Parachuaria化石的发现及其意义. 地质学报, 78 (6): 721-725. doi: 10.3321/j.issn:0001-5717.2004.06.001
      王欢, 王河锦, 陈涛, 等, 2005. 天津蓟县二维纳米级伊利石研究. 地质论评, 51 (3): 319-324. doi: 10.3321/j.issn:0371-5736.2005.03.012
      王杰, 陈践发, 窦启龙, 2004. 华北北部中、上元古界生烃潜力特征研究. 石油实验地质, 26 (2): 206-211. doi: 10.3969/j.issn.1001-6112.2004.02.014
      武铁山, 2002. 华北晚前寒武纪(中—新元古代) 岩石地层单位及多重划分对比. 中国地质, 29 (2): 147-154. doi: 10.3969/j.issn.1000-3657.2002.02.008
      徐德斌, 王敦则, 白志达, 等, 2002. 河北兴隆地区中元古界串岭沟组沉积环境与相模式. 中国地质, 29 (2): 167-171. doi: 10.3969/j.issn.1000-3657.2002.02.011
      阎玉忠, 刘志礼, 1998. 中国北方燕山盆地长城纪生物群落和古环境关系探讨. 微体古生物学报, 15 (3): 249-266. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT803.002.htm
      张巧大, 宋天锐, 和政军, 等, 2002. 北京十三陵地区中—新元古界碳酸盐岩Pb-Pb年龄研究. 地质论评, 48 (4): 416-423. doi: 10.3321/j.issn:0371-5736.2002.04.012
      朱士兴, 邢裕盛, 张鹏远, 1994. 华北地台中、上元古界生物地层序列. 北京: 地质出版社, 119-125.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (4061) PDF downloads(66) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return