• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 33 Issue 5
    Sep.  2008
    Turn off MathJax
    Article Contents
    WANG Xiao-rui, WANG Yuan-han, LIU Xiao-nan, 2008. Back-Analysis for Surrounding Rock Deformation Monitoring of Yunling Tunnel. Earth Science, 33(5): 699-705.
    Citation: WANG Xiao-rui, WANG Yuan-han, LIU Xiao-nan, 2008. Back-Analysis for Surrounding Rock Deformation Monitoring of Yunling Tunnel. Earth Science, 33(5): 699-705.

    Back-Analysis for Surrounding Rock Deformation Monitoring of Yunling Tunnel

    • Received Date: 2008-01-25
    • Publish Date: 2008-09-25
    • Taking into account of complicated geological environment, large deformation, high stress and long-time use, stability analysis for surrounding rock is very important for the deep, long and wide tunnel engineering. Defining parameters by displacement back analysis has been the focus of current study. This method can be used to deal with the complicated non-linear relationship between the parameters of surrounding rock and the measuring information, and to judge and adjust the scheme of second support, while artificial Intelligence are adept in identification, representation and management of the non-linear relationship. The paper, through deformation monitoring for surrounding rock of Yunling tunnel of Shi-Man highway, combined the system of biologic emulation and the software of fast lagrangian analysis of continua (FLAC) to conduct direct analysis, took the advantage of the high nonlinearity, good reasoning and integration of neural network and obtained output vector by data-analysis software. Then we took adaptive immunity algorithm as searching tool to look for the best network structure for parameters in all room, searched for the best parameters with back analysis according information gained by measuring practically. Finally, direct calculation came out the results. This back analysis, improved the primary parameters of physical and mechanical parameters of tunnel surrounding rock, adjusted the scheme of support and obtained satisfied conclusion. The research results show that the back analysis proposed in this paper is of practical significance to the stability analysis of the tunnel surrounding rock and to informational design.

       

    • loading
    • An, H. G., Feng, X. T., 2001. The research of evolutionary finite element method of the stability and opti mizationat large cavern group. Rock and Soil Mechanics, 22 (4): 373-377 (in Chinese with English abstract).
      Arora, J. S., Dutla, A., 1997. Explicit and mplicit methods fodesign sensitivity analysis of nonlinear structures under dynamic loads. Appl. Mech. Review, 50 (1): 11-19.
      Gao, W., Zheng, Y. R., 2004. Integrated intelligent method for displacement prediction in underground engineering. China Civil Engineering Journal, 37 (4): 87-92 (in Chinese with English abstract).
      Goldberg, D. E., 1989. Genetic algorithms in search, opti mizationand machine-learning. Addison Wesley, New York.
      Holland, J. H., 1975. Adaptation in natural and artificial systems; anintroductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge.
      Li, X. H., Wang, H. T., Jia, J. Q., et al., 2005. Ultimate displacement discrimination of stability and reliability analysis of surrounding rocks of tunnel and underground engineering. Rock and Soil Mechanics, 26 (6): 850-854 (in Chinese with English abstract).
      Scinvivas, M., Patnaik, L. M., 1994. Adaptive probabilities of crossover and mutation in geneticalgorithms. IEEE Trams SMC, 24 (4): 656-667.
      Tan, Y. Z., Shen, J., Xiao, J., et al., 2002. Overview of artificial immune engineering. Journal of Southeast University (Natural Science Edition), 32 (4): 676-682 (in Chinese with English abstract).
      Wang, D. G., Liu, Y. X., Li, S. J., 2000. Genetic algorithms for inverse analysis of displacements in geotechnical engineering. Chinese Journal of Rock Mechanics and Engineering, 19 (Suppl. ): 979-982 (in Chinese with English abstract).
      Wang, X. F., 2006. Intelligent and nonlinear analysis of the stability of deep-buriedtunnel, tssterm. Chongqing University, Chongqing (in Chinese with English abstract).
      Zhang, Z. Q., Feng, X. T., Yang, C. X., et al., 1999. Study on applicability of geneticneural network modeling of nonlin-ear fisplacement yi me series. Rock and Soil Mechanics, 20 (4): 19-24 (in Chinese with English abstract).
      Zheng, Y. R., Liu, X. H., 1996. Nonlinear science and rock mechanics problems. Chinese Journal of Geotechnical Engineering, 18 (1): 98-100 (in Chinese with English abstract).
      安红刚, 冯夏庭, 2001. 大型洞室群稳定性与优化的进化有限元方法研究. 岩土力学, 22 (4): 373-377. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200104002.htm
      高玮, 郑颖人, 2004. 地下工程变形预测的集成智能方法. 土木工程学报, 37 (4): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200404016.htm
      李晓红, 王宏图, 贾剑青, 等, 2005. 隧道及地下工程围岩稳定性及可靠性分析的极限位移判别. 岩土力学, 26 (6): 850-854. doi: 10.3969/j.issn.1000-7598.2005.06.003
      谈英姿, 沈炯, 肖隽, 等, 2002. 人工免疫工程综述. 东南大学学报(自然科学版), 32 (4): 676-682. doi: 10.3321/j.issn:1001-0505.2002.04.032
      王登刚, 刘迎曦, 李守巨, 2000. 岩土工程位移反分析的遗传算法. 岩石力学与工程学报, 19 (增刊): 979-982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1033.htm
      王心飞, 2006. 深埋隧道稳定性分析的智能化及非线性研究[博士论文]. 重庆: 重庆大学.
      张治强, 冯夏庭, 杨成祥, 等, 1999. 非线性位移时间序列进化神经网络建模的适应性研究. 岩土力学, 20 (4): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199904003.htm
      郑颖人, 刘兴华, 1996. 近代非线性科学与岩石力学问题. 岩土工程学报, 18 (1): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC601.015.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(4)

      Article views (4001) PDF downloads(84) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return