Citation: | ZHOU Cui-ying, CHEN Heng, ZHU Feng-xian, 2008. Multivariable Chaotic Discrimination for Slope Evaluation According to Their Nonlinear Displacement-Time Sequence. Earth Science, 33(3): 393-398. |
Cheng, Q. M., 2006. Singularity-generalized self-similarity-fractal spectrum (3S) models. Earth Science-Journal of China University of Geosciences, 31(3): 337-348(in Chinese with English abstract).
|
Grassberger, P., Procaccia, I., 1983. Measuring the strangeness of strange attractors. Physica D, 9: 189-208. doi: 10.1016/0167-2789(83)90298-1
|
Huang, R. Q., Xu, Q., 1996. The application of nonlinear theory in engineering geology. Bulletin of National Natural Science Foundation of China, 2: 79-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKJJ199602000.htm
|
Huang, S. W., 2002. Study on chaotic vibration of engineering structures, algorithms of chaotic maximum optimization and its application [Dissertation]. Hehai University, Nanjing (in Chinese with English abstract).
|
Kautz, H., Schreiber, T., 1997. Nonliear time series analysis. Cambridge University Press, Cambridge.
|
Kim, H. S., Eykholt, R., Salas, J. D., 1999. Nonlinear dynamic, delay times, and embedding windows. Physica D, 127: 48-60. doi: 10.1016/S0167-2789(98)00240-1
|
Liu, B. Z., Pen, J. H., 2004. Nonlinear dynamic mechanics. Higher Education Press, Beijing (in Chinese).
|
Lopez-Ruiz, R., Manclni, H. L., Calet, X. A., 1995. A statistical measure of complexity. Phys. Lett. , 209(5-6) 321-326. doi: 10.1016/0375-9601(95)00867-5
|
Lü, J. H., Chen, J. A., Chen, S. H., 2002. Chaotic time sequence analysis and application. Wuhan University Press, Wuhan (in Chinese).
|
Pincus, S. M., 1995. Approximate entropy (ApEn) as a complexity measure. Chaos, 5(1): 110-117. doi: 10.1063/1.166092
|
Provenzale, A., Smith, L. A., Vio, R., et al., 1994. Distinguishing between low-dimensional dynamics and randomness in measured time series. Physica D, 58: 31-49.
|
Qin, S. Q., Jiao, J. J., Wang, S. J., et al., 2001. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process. International Journal of Solids and Structures, 38: 8093-8109. doi: 10.1016/S0020-7683(01)00060-9
|
Takens, F., 1981. Detecting strange attractors in turbulence. In: Dynamical systems and turbulence. Lecture Notes in Mathematics, 898: 366-381.
|
Theiler, J., 1986. Spurious dimension from correlation algorithms applied to limited time series data. Phys. Rev. A, 34(3): 2427-2432. doi: 10.1103/PhysRevA.34.2427
|
Wolf, A., Swift, J. B., Swinney, H. L., et al., 1985. Determining Lyapunov exponents froma time series. Physica D, 16(3): 285-317. doi: 10.1016/0167-2789(85)90011-9
|
Yu, C. W., 2002. Complexity of geosystems: Basic issues of geological science (Ⅰ). Earth Science-Journal of China University of Geosciences, 27(5): 509-519(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205005.htm
|
Zhou, C. Y., 2000. Nonlinear features and prognosis of landslides, landslides in research, theory and practice. Thomas Telford, London, 1(1): 267-272.
|
成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学——中国地质大学学报, 31(3): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603008.htm
|
黄润秋, 许强, 1996. 非线性理论在工程地质中的应用. 中国科学基金, 2: 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199602000.htm
|
黄胜伟, 2002. 工程结构混沌振动、混沌最优化算法及其应用[博士论文]. 南京: 河海大学.
|
刘秉正, 彭建华, 2004. 非线性动力学. 北京: 高等教育出版社.
|
吕金虎, 陈君安, 陈士华, 2002. 混沌时间序列分析及其应用. 武汉: 武汉大学出版.
|
於崇文, 2002. 地质系统的复杂性——地质科学的基本问题(Ⅰ). 地球科学——中国地质大学学报, 27(5): 509-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205005.htm
|