Citation: | ZHANG Zhen-liang, LÜ Xin-biao, RAO Bing, 2008. Formational Mechanisms of Homogeneous Fluid and Boiling Fluid: Evidences from Synthetic Fluid Inclusions. Earth Science, 33(2): 259-265. |
Bakker, R. J., Diamond, L. W., 2000. Determination of thecomposition and molar volume of H2O-CO2 fluid inclu-sions by microthermometry. Geochimicaet Cosmochimica Acta, 64 (10): 1753-1764. doi: 10.1016/S0016-7037(99)00334-8
|
Bischoff, J. L., 1991. Densities of liquids and vapors in boil-ing NaCl-H2O solutions: A PVTX summary from300℃to500℃. Amer. J. Sci., 291: 309-338. doi: 10.2475/ajs.291.4.309
|
Chen, J. Y., Zheng, H. F., Zeng, Y. S., 2002. Raman spectro-scopic study on hydrogen bond of water molecules insynthetic inclusions under high temperature. Rock and Mineral Analysis, 21 (3): 166-170 (in Chinese with English abstract).
|
Chen, Z. L., Xu, J. Y., 2007. Dip of the oil (gas) -water inter-faces in anticline-hydrodynamic oil (gas) pools. Earth Science—Journal of China University of Geosciences, 32 (1): 89-92 (in Chinese with English abstract).
|
Hoffmann, M. M., Conradi, S., 1997. Are there hydrogenbonds in supercritical water. J. Am. Chem. Soc., 119 (16): 3811-3817. doi: 10.1021/ja964331g
|
Ikushi ma, Y., Hatakeda, K., Soito, N., 1998. An in-situ Ra-man spectroscopy studies of subcritical and supercriticalwater: The peculiarity of hydrogen bonding near thecritical point. J. Chem. Phys., 108 (14): 5855-5860. doi: 10.1063/1.475996
|
Kendrich, M. A., Burgess, R., Pattrich, R. A. D., et al., 2001. Fluid inclusion noble gas and halogen evidence onthe origin of Cu-porphyry mineralizingfluids. Geochimicaet Cosmochimica Acta, 65 (16): 2651-2668. doi: 10.1016/S0016-7037(01)00618-4
|
Liu, B., Shen, K., 1995. Formulae for calculating oxygen fugacities of fluid inclusions and their applications. Acta Mineralogica Sinica, 15 (3): 291-302 (in Chinese with English abstract).
|
Liu, B., Shen, K., 1999. Thermodynamics of fluidinclusion. Geological Publishing House, Beijing, 119-140 (in Chinese).
|
Philippot, P., 1996. The chemistry of high-pressure fluids (1 to3 GPa): Natural observations vs. experi mental constraints. Earth Sciences Frontiers, 3 (3): 39-48 (in Chinese with English abstract).
|
Roedder, E., Kopp, O. C., 1975. Acheck on the validity of thepressure correction in inclusion geothermometry, using hydrothermally grown quartz. Fortschr. Mineral., 52: 431.
|
Schmidt, C., Rosso, K. M., Bodnar, R. J., 1995. Syntheticfluid inclusions: XIII. Experimental determination of thePVT properties in the system H2O+40% NaCl+5mol% CO2 at elevated temperature and pressure. Geochimicaet Cosmochimica Acta, 59: 3953-3959. doi: 10.1016/0016-7037(95)00258-2
|
Spycher, N. F., Reed, M. H., 1989. Evolution of a broad lands-type epithermal orefluid along alternative P-Tpaths: Impli-cations for the transport and deposition of base, precious, and volatile metals. Econ. Geol., 84: 328-359. doi: 10.2113/gsecongeo.84.2.328
|
Sterner, S. M., Bodnar, R. J., 1984. Synthetic fluid inclusionsin natural quartz: I. Compositional types synthesized andapplications to experi mental geochemistry. Geochim. Cosmochim. Acta, 48: 2659-2668.
|
Xiao, X. J., Gu, L. X., Ni, P., et al., 2004. Esti mation of gas-escaping amount during ore-formation originated fromfluid boiling at massive sulfide deposits, Tongling re-gion. Uranium Geology, 20 (4): 91-98 (in Chinese with English abstract).
|
Yang, W. R., Zhang, W. H., 1996. Character of fault proper-ty and combination of fluid inclusions. Earth Science—Journal of China University of Geosciences, 21 (3): 285-290 (in Chinese with English abstract).
|
Zhang, D. H., 1997. Some new advances in ore-forming fluidgeochemistry on boiling and mixing of fluids during theprocesses of hydrothermal deposits. Advances in Earth Science, 12 (6): 546-552 (in Chinese with English abstract).
|
Zhang, W. H., Chen, Z. Y., 1993. Geology of fluid inclusion. China University of Geosciences Press, Wuhan, 108-112 (in Chinese).
|
Zhang, Y. G., Frantz, J. D., 1989. Experimental determination of the compositional limits of immiscibility in thesystem CaCl2-H2O-CO2at high temperatures and pres-sures using synthetic fluid inclusions. Chemical Geology, 74: 289-308. doi: 10.1016/0009-2541(89)90039-9
|
Zhang, Z. L., Huang, Z. L., Rao, B., et al., 2005. Concentration mechanism of ore-forming fluid in Huize lead-zincdeposits, Yunnan Province. Earth Science—Journal of China University of Geosciences, 30 (4): 443-450 (in Chinese with English abstract).
|
Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. Ore-forming fluid controlling mineralization in Qulongsuper-large porphyry copper deposit, Tibet. Earth Science—Journal of China University of Geosciences, 31 (3): 349-354 (in Chinese with English abstract).
|
陈晋阳, 郑海飞, 曾贻善, 2002. 高温下合成包裹体中流体水分子氢键的拉曼光谱分析. 岩矿测试, 21 (3): 166-170. doi: 10.3969/j.issn.0254-5357.2002.03.002
|
陈振林, 许浚远, 2007. 背斜-水动力复合油(气) 藏油(气) 水界面产状. 地球科学——中国地质大学学报, 32 (1): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701012.htm
|
刘斌, 沈昆, 1995. 流体包裹体的氧逸度计算公式及其应用. 矿物学报, 15 (3): 291-302. doi: 10.3321/j.issn:1000-4734.1995.03.009
|
刘斌, 沈昆, 1999. 流体包裹体热力学. 北京: 地质出版社, 119-140. https://cdmd.cnki.com.cn/Article/CDMD-11415-1012365217.htm
|
Philippot, P., 1996. 高压流体(1-3GPa) 的化学组成: 自然观察与实验对比. 地学前缘, 3 (3): 39-48. doi: 10.3321/j.issn:1005-2321.1996.03.004
|
肖新建, 顾连兴, 倪培, 等, 2004. 铜陵地区金属硫化物矿床沸腾流体成矿过程中气体逸失量的估算. 铀矿地质, 20 (2): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200402004.htm
|
杨巍然, 张文淮, 1996. 断裂性质与流体包裹体组合特征. 地球科学——中国地质大学学报, 21 (3): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX603.009.htm
|
张德会, 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展, 12 (6): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ706.006.htm
|
张文淮, 陈紫英, 1993. 流体包裹体地质学. 武汉: 中国地质大学出版社, 108-112.
|
张振亮, 黄智龙, 饶冰, 等, 2005. 会泽铅锌矿床成矿流体浓缩机制探讨. 地球科学——中国地质大学学报, 30 (4): 443-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504008.htm
|
郑有业, 高顺宝, 张大权, 等, 2006. 西藏驱龙超大型斑岩铜矿床成矿流体对成矿的控制. 地球科学——中国地质大学学报, 31 (3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603009.htm
|