• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 33 Issue 2
    Mar.  2008
    Turn off MathJax
    Article Contents
    CHEN Jia-jun, LI Sen, MENG Zhan-li, YANG Zhou-xi, 2008. Stochastic Numerical Modeling of Groundwater in a Phreatic Aquifer with Perturbation Finite Element Method. Earth Science, 33(2): 279-284.
    Citation: CHEN Jia-jun, LI Sen, MENG Zhan-li, YANG Zhou-xi, 2008. Stochastic Numerical Modeling of Groundwater in a Phreatic Aquifer with Perturbation Finite Element Method. Earth Science, 33(2): 279-284.

    Stochastic Numerical Modeling of Groundwater in a Phreatic Aquifer with Perturbation Finite Element Method

    • Received Date: 2007-03-28
    • Publish Date: 2008-03-25
    • Dynamically stochastic simulation of flow in a phreatic aquifer is a complicated and challenging issue. A perturbation finite element model for transient two-dimensional flow in a phreatic aquifer is developed and presented in this paper. In the model, stochastic variables include hydraulic conductivity and specific yield in governing equation, as well as source/sink and boundary conditions, 9 equations are derived in order to solve expectation and variance of two-dimensional unsteady flow and specific numeric treatment is adopted for different equation discreteness. In the end, simulated results are analyzed by a hypothetical example, and it shows that the influence of variation of boundary condition variance and hydraulic conductivity variance is little and that of variation of specific yield variance is significant. This model can be applied to general stochastic simulation of unsteady flow in a phreatic aquifer due to the fact that it takes into account all relevant factors. The study presents the influence on dynamic simulation of flow in phreatic water by stochastic variables of boundary condition, hydraulic conductivity and specific yield and it offers an alternative theory of stochastic simulation of ground water flow.

       

    • loading
    • Chen, C. X., Wan, J. W., 2002. Model of ground water flow in horizontal well and its numerical solutions. Earth Science-Journal of China University of Geosciences, 27(2): 135-140(in Chinese with English abstract).
      Christiana, A G, Kamyirar, H, 2003. Stochastic modeling of transient contamination transport. Journal of Hydrology, 276: 224-239. doi: 10.1016/S0022-1694(03)00059-3
      Ferrante, M. T., Yeh, C. J., 1999. Head and flux variability in heterogeneous unsaturated soils under transient flow conditions. Water Resources Research, 35(4): 1471-1479.
      Harald, O., Hans, L. P., 1998. An efficient probabilistie finite element method for stochastic groundwater flow. Advance in Water Research, 22(2): 185-195. doi: 10.1016/S0309-1708(97)00044-4
      Li, B. T., Yeh, C. J., 1998. Sensitivity and moment analyses of head in variably saturated regimes. Advance in Water Resources, 21(6): 477-485. doi: 10.1016/S0309-1708(97)00011-0
      Li, S. G., Laughin, D. M., IAao, H. S., 2003. A computation-ally practical method for stochastic groundwater modeling. Advance in WaterResources, 26: 1137-1148.
      Mu, S., Wu, G. Q., Yin, Z. H., 2001. Kalman filtration technology correcting groundwater flow system-Applying in Daqing region with stochastically-deterministically numerical model. HeilongJiang Science and Technology of Water Conservancy, 2: 28-299(in Chinese).
      Pan, H. Y., Wang, G. C, 1999. A research of applying of stochastic model in groundwater resources calculation. World Geology, 18(4): 58-63(in Chinese with English abstract).
      Sheng, J. C, Su, B Y., Wei, B. Y., 2001. Stochastic seepage analysis of jointed rock masses by usage of Taylor series stochastic finite element method. Chinese Journal of Geotechnical Engineering, 23(4): 485-488(in Chinese with English abstract).
      Yang, J. Z, Cai, S Y., 2000. Stochastic theory of moisture and solute transport in porous media. Science Press, Beijing(in Chinese).
      Yao, U H., 1999. Perturbation coeffident awaiting determination stochastic finite element method for groundwater flow models. Journal of Hydraulic Engineering, (7): 60-63(in Chinese with English abstract).
      陈崇希, 万军伟, 2002. 地下水水平井流的模型及数值模拟方法. 地球科学-中国地质大学学报, 27(2): 135-140. doi: 10.3321/j.issn:1000-2383.2002.02.002
      慕山, 吴国权, 尹兆和, 2001. Kalman滤波技术校正地下水流系统确定-随机性数值模型在大庆地区的应用. 黑龙江水利科技, 2: 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKJ200102019.htm
      潘宏雨, 王国成, 1999. 随机模型在地下水资源计算中的应用-随机水文地质计算理论与方法. 世界地质, 18(4): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ199904011.htm
      盛金昌, 速宝玉, 魏保义, 2001. 基于Taylor展开随机有限元法的裂隙岩体随机渗流分析. 岩土工程学报, 23(4): 485-488. doi: 10.3321/j.issn:1000-4548.2001.04.022
      杨金忠, 蔡树英, 2000. 多孔介质中水分及溶质运移的随机理论. 北京: 科学出版社.
      姚磊华, 1999. 地下水水流模型的摄动待定系数随机有限元法. 水利学报, (7): 60-63. doi: 10.3321/j.issn:0559-9350.1999.07.011
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(4)

      Article views (3593) PDF downloads(56) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return