Citation: | CAO Li, CHENG Qiu-ming, CHEN Zhi-jun, YAN Guang-sheng, 2009. Generalized Self-Similarity Theory and Models. Earth Science, 34(2): 270-274. |
In order to understand various anisotropic scale invariance systems, the generalized scale invariance (GSI) concept was brought forward to present a formalism stating the most general conditions under which large and small scales can be related.Two different anisotropic scale invariance quantification models were developed: the scale invariant generator (SIG) model quantifies anisotropies by estimating the GSI generator in frequency domain, a form of scale transformation defined in GSI representing how the scaling field is stratified and how it rotates, and the family of balls that best describes the scaling field; the spectrum-area (S-A) model quantifies anisotropies by estimating the anisotropic scaling exponent defined in GSI through a power-law function representing the relationship between area of the set with spectral energy density above P on the 2D frequency domain and P. S-A is not only an anisotropic scale invariance quantification technique but also a mixing data decomposition technique, which can decompose mixing data into multiple components based on anisotropic scaling properties in frequency domain.This paper introduces the GSI concept, the SIG model and S-A model systematically and proposes an idea to combine the SIG model and S-A model so that the new combined model can not only decompose mixing data into multiple components but also quantify the decomposed components' anisotropic scale invariance as well.
Agterberg, F. P., Cheng, Q., Wright, D., 1993. Fractal modeling of mineral deposits. In: Proceedings XXIV APCOM, October 31-November 3, 1993. Montreal, Quebec, 1: 43-53.
|
Cao, L., 2005. Quantification of anisotropic scale invariance from 2D fields for decomposition of mixing patterns: (Dissertation). York University, Toronto, Ontario, 140.
|
Cheng, Q. M., 1999. Spatial and scaling modelling for geochemical anomaly separation. J. of Geochem. Explor., 65 (3): 175-194. doi: 10.1016/S0375-6742(99)00028-X
|
Cheng, Q. M., 2001a. Spatial self-similarity and geophysical and geochemical anomaly decomposition. J. Geophys. Prog., 16 (2): 8-17 (in Chinese with English abstract).
|
Cheng, Q. M., 2001b. Self-similarity/self-affinity and pattern recognition techniques for GIS analysis and image processing. In: IAMG2001 Meeting, Canĉun, Mexico, September 6-12, 2001 (6 pages on CD).
|
Cheng, Q. M., 2004. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36 (3): 345-360. doi: 10.1023/B:MATG.0000028441.62108.8a
|
Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor., 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2
|
Cheng, Q. M., Xu, Y., Grunsky, E., 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation. In: Lippard, J. L., Naess, A., Sinding-Larsen, R., eds., Proceedings of the International Association of Mathematical Geology Meeting. Trondheim, Norway I, 87-92.
|
Cheng, Q. M., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Nat. Resour. Res., 9 (1): 43-52. doi: 10.1023/A:1010109829861
|
Fox, C. G., Hayes, D. E., 1985. Quantitative methods for analyzing the roughness of the seafloor. Rev. Geophys. , 23 (1): 1-48. doi: 10.1029/RG023i001p00001
|
Lewis, G. M., 1993. The scale invariant generator technique and scaling anisotropy in geophysics: (Dissertation). McGill University, Montreal, Que., 120.
|
Lewis, G. M., Lovejoy, S., Schertzer, D., et al., 1999. The scale invariant generator technique for quantifying anisotropic scale invariance. Comp. Geosci., 25 (9): 963-978. doi: 10.1016/S0098-3004(99)00061-8
|
Lovejoy, S., Schertzer, D., 1985. Generalized scale invariance in the atmosphere and fractal models of rain. Water Resour. Res., 21 (8): 1233-1250. doi: 10.1029/WR021i008p01233
|
Lovejoy, S., Schertzer, D., Tsonis, A. A., 1987. Functional box-counting and multiple dimensions in rain. Science, 235 (4792): 1036-1038. doi: 10.1126/science.235.4792.1036
|
Schertzer, D., Lovejoy, S., 1991. Nonlinear variability in geophysics—Scaling and fractals. Kluwer Academic, Dordrecht, The Netherlands, 318.
|
成秋明, 2001a. 空间自相似性与地球物理和地球化学场的分解方法. 地球物理学进展, 16 (2): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200102001.htm
|