| Citation: | CAO Li, CHENG Qiu-ming, CHEN Zhi-jun, YAN Guang-sheng, 2009. Generalized Self-Similarity Theory and Models. Earth Science, 34(2): 270-274. | 
In order to understand various anisotropic scale invariance systems, the generalized scale invariance (GSI) concept was brought forward to present a formalism stating the most general conditions under which large and small scales can be related.Two different anisotropic scale invariance quantification models were developed: the scale invariant generator (SIG) model quantifies anisotropies by estimating the GSI generator in frequency domain, a form of scale transformation defined in GSI representing how the scaling field is stratified and how it rotates, and the family of balls that best describes the scaling field; the spectrum-area (S-A) model quantifies anisotropies by estimating the anisotropic scaling exponent defined in GSI through a power-law function representing the relationship between area of the set with spectral energy density above P on the 2D frequency domain and P. S-A is not only an anisotropic scale invariance quantification technique but also a mixing data decomposition technique, which can decompose mixing data into multiple components based on anisotropic scaling properties in frequency domain.This paper introduces the GSI concept, the SIG model and S-A model systematically and proposes an idea to combine the SIG model and S-A model so that the new combined model can not only decompose mixing data into multiple components but also quantify the decomposed components' anisotropic scale invariance as well.
	                | 
					 Agterberg, F. P., Cheng, Q., Wright, D., 1993. Fractal modeling of mineral deposits. In: Proceedings XXIV APCOM, October 31-November 3, 1993. Montreal, Quebec, 1: 43-53. 
						
					 | 
			
| 
					 Cao, L., 2005. Quantification of anisotropic scale invariance from 2D fields for decomposition of mixing patterns: (Dissertation). York University, Toronto, Ontario, 140. 
						
					 | 
			
| 
					 Cheng, Q. M., 1999. Spatial and scaling modelling for geochemical anomaly separation. J. of Geochem. Explor., 65 (3): 175-194. doi:  10.1016/S0375-6742(99)00028-X 
						
					 | 
			
| 
					 Cheng, Q. M., 2001a. Spatial self-similarity and geophysical and geochemical anomaly decomposition. J. Geophys. Prog., 16 (2): 8-17 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Cheng, Q. M., 2001b. Self-similarity/self-affinity and pattern recognition techniques for GIS analysis and image processing. In: IAMG2001 Meeting, Canĉun, Mexico, September 6-12, 2001 (6 pages on CD). 
						
					 | 
			
| 
					 Cheng, Q. M., 2004. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36 (3): 345-360. doi:  10.1023/B:MATG.0000028441.62108.8a 
						
					 | 
			
| 
					 Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor., 51 (2): 109-130. doi:  10.1016/0375-6742(94)90013-2 
						
					 | 
			
| 
					 Cheng, Q. M., Xu, Y., Grunsky, E., 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation. In: Lippard, J. L., Naess, A., Sinding-Larsen, R., eds., Proceedings of the International Association of Mathematical Geology Meeting. Trondheim, Norway I, 87-92. 
						
					 | 
			
| 
					 Cheng, Q. M., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Nat. Resour. Res., 9 (1): 43-52. doi:  10.1023/A:1010109829861 
						
					 | 
			
| 
					 Fox, C. G., Hayes, D. E., 1985. Quantitative methods for analyzing the roughness of the seafloor. Rev. Geophys. , 23 (1): 1-48. doi:  10.1029/RG023i001p00001 
						
					 | 
			
| 
					 Lewis, G. M., 1993. The scale invariant generator technique and scaling anisotropy in geophysics: (Dissertation). McGill University, Montreal, Que., 120. 
						
					 | 
			
| 
					 Lewis, G. M., Lovejoy, S., Schertzer, D., et al., 1999. The scale invariant generator technique for quantifying anisotropic scale invariance. Comp. Geosci., 25 (9): 963-978. doi:  10.1016/S0098-3004(99)00061-8 
						
					 | 
			
| 
					 Lovejoy, S., Schertzer, D., 1985. Generalized scale invariance in the atmosphere and fractal models of rain. Water Resour. Res., 21 (8): 1233-1250. doi:  10.1029/WR021i008p01233 
						
					 | 
			
| 
					 Lovejoy, S., Schertzer, D., Tsonis, A. A., 1987. Functional box-counting and multiple dimensions in rain. Science, 235 (4792): 1036-1038. doi:  10.1126/science.235.4792.1036 
						
					 | 
			
| 
					 Schertzer, D., Lovejoy, S., 1991. Nonlinear variability in geophysics—Scaling and fractals. Kluwer Academic, Dordrecht, The Netherlands, 318. 
						
					 | 
			
| 
					 成秋明, 2001a. 空间自相似性与地球物理和地球化学场的分解方法. 地球物理学进展, 16 (2): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200102001.htm 
					
					 |