Citation: | CHEN Zhi-jun, CHENG Qiu-ming, CHEN Jian-guo, 2009. Comparison of Different Models for Anomaly Recognition of Geochemical Data by Using Sample Ranking Method. Earth Science, 34(2): 353-364. |
The geochemical anomaly recognition is the key to geochemical prospecting.Many new models are brought forward to identify and extract the geochemical weak anomalies from the complex background.How to compare the differences in aspect of the anomaly recognition effect of these different models? The authors advance the sample ranking method to discuss this problem.The gliding anomaly contrast and the local singularity analysis are applied to the Cu element data of the stream sediment samples from Gejiu area, Yunnan Province, China.The ranks for the raw data, contrast value and the local singularity exponents, denoted by RANK (Raw), RANK (CV) and RANK (Δα) respectively, are calculated by ordering the samples from the high anomaly to the low anomaly.Three ways are employed to compare the RANK (CV) and RANK (Δα) with the RANK (Raw) : (1) the characteristics of ranks for samples with the strong background and the weak background; (2) the characteristics of ranks for samples where the Cu deposits occur; and (3) the spatial correlation between the locations of Cu deposits and the cumulative area with the same thresholds of the upper rank values.The results demonstrate that the local singularity analysis is a useful model for the weak geochemical anomaly recognition, whose effect corresponds with the gliding anomaly contrast model or even better.The prospective areas delineated by means of weights of evidence method on the basis of local singularity exponents can provide new information and may be significant for the prediction of the undiscovered mineral deposits, which is significantly superior to the results on the basis of raw concentration data.The local singularity analysis has the advantage of the perspicuous principle, convenience and effective performance, and we can substitute it for the gliding contrast value method for the anomaly recognition of geochemical data.
Agterberg, F. P., 1989. Computer programs for mineral exploration. Science, 245: 76-81. doi: 10.1126/science.245.4913.76
|
Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. M., 1993. Weights of evidence modeling and weighted logis-tic regression for mineral potential mapping. In: Davis, J. C., Herzfeld, U. C., eds., Computers in geology. Oxford University Press, New York, 13-32.
|
Bao, Z. Y., Li, F. L., Jia, X. Q., 1999. Methodology of temporal-spatial structure of geochemical fields. Earth Science—Journal of China University of Geosciences, 24 (3): 282-286 (in Chinese with English abstract).
|
Bonham-Carter, G. F., 1994. Geographic information systemfor geosciences: Modelling with GIS. Pergamon Press, Oxford, 398.
|
Chen, Z. J., 2007. Multifractal theory based local singularity analysis method and its application in spatial information extraction for mineral exploration (Dissertation). China University of Geosciences, Wuhan (in Chinesewith English abstract).
|
Chen, Z. J., Cheng, Q. M., Chen, J. G., et al., 2007. A noveliterative approach for mapping local singularities from geochemical data. Nonlin. Processes Geophys. , 14: 317-324. doi: 10.5194/npg-14-317-2007
|
Cheng, Q. M., 1999a. Spatial and scaling modeling for geochemical anomaly separation. Journal of Geochemical Exploration, 65: 175-194. doi: 10.1016/S0375-6742(99)00028-X
|
Cheng, Q. M., 1999b. Multifractality and spatial statistics. Computers & Geosciences, 25 (9): 949-961.
|
Cheng, Q. M., 2006a. GIS-based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris, J. R., ed., GIS applica-tionin the earth sciences—GAC special paper. Geolog-ical Association of Canada Special Book, 285-296.
|
Cheng, Q. M., 2006b. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. OreGeology Reviews, 32: 314-324.
|
Cheng, Q. M., 2008. Singularity of mineralization and multi-fractal distribution of mineral deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 27 (3): 299-305 (in Chinese with English abstract).
|
Cheng, Q. M., Agterberg, F. P., 2008. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, DOI: 10.1016/j.cageo.2008.02.034.
|
Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2
|
Cheng, Q. M., Agterberg, F. P., Bonham-Carter, G. F., 1996. Spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56 (3): 183-195. doi: 10.1016/S0375-6742(96)00035-0
|
Cheng, Q. M., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9 (1): 43-51. doi: 10.1023/A:1010109829861
|
Grunsky, E. C., 2007. The interpretation of regional geo-chemical survey data. In: Gubins, A. G., ed., Proceed-ings of Exploration2007: Fifth Decennial International Conference on Mineral Exploration, 139-182.
|
Han, D. Y., Gong, Q. J., Xiang, Y. C., 2004. Some new fractal methods for regional geochemical survey data processing. Geological Bulletion of China, 23 (7): 714-719 (in Chinese with English abstract).
|
Li, C. J., Ma, T. H., Shi, J. F., 2003. Application of a fractal method relating concentrations and distances for separa-tion of geochemical anomalies from background. Journal of Geochemical Exploration, 77: 167-175. doi: 10.1016/S0375-6742(02)00276-5
|
Martinez, W. L., Martinez, A. R., 2005. Exploratory data analysis with MATLAB. Chapman & Hall/CRC, New York, 405.
|
Reimann, C., Filzmoser, P., Garrett, R. G., 2005. Background and threshold: Critical comparison of methods of determination. Science of the Total Environment, 346: 1-16. doi: 10.1016/j.scitotenv.2004.11.023
|
Shi, C. Y., Zhang, J. H., Huang, X. M., 1999. Subregion median contrast filtering method and recognition of weak anomalies. Geophysical & Geochemical Exploration, 23 (4): 250-257 (in Chinese with English abstract).
|
Tukey, J. W., 1997. Exploratory data analysis. Addison-Wesley, Reading.
|
Wang, B. L., Lü, S. K., Hu, J. G., 2004. Atentative description of the Chuan-Dian-Qian rhombic massif. Yunnan Geology, 23 (2): 140-153 (in Chinese).
|
Xiong, G. C., Xie, D. S., Zhang, W. B., et al., 1997. The rapid exploration method and technique systems for metallic minerals in Xinjiang Province. Geological Publishing House, Beijing (in Chinese).
|
Zhuang, Y., Q., Wang, R. Z., Yang, S. P., et al., 1996. Geology of Gejiu tin-copper polymetallic deposit. China Seismic Publishing House, Beijing (in Chinese).
|
鲍征宇, 李方林, 贾先巧, 1999. 地球化学场时-空结构分析的方法体系. 地球科学——中国地质大学学报, 24 (3): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX903.014.htm
|
陈志军, 2007. 多重分形局部奇异性分析方法及其在矿产资源信息提取中的应用(博士学位论文). 武汉: 中国地质大学.
|
成秋明, 2008. 成矿过程奇异性与矿床多重分形分布. 矿物岩石地球化学通报, 27 (3): 299-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200803014.htm
|
韩东昱, 龚庆杰, 向运川, 2004. 区域化探数据处理的几种分形方法. 地质通报, 23 (7): 714-719. doi: 10.3969/j.issn.1671-2552.2004.07.014
|
史长义, 张金华, 黄笑梅, 1999. 子区中位数衬值滤波法及弱小异常识别. 物探与化探, 23 (4): 250-257. doi: 10.3969/j.issn.1000-8918.1999.04.002
|
王宝碌, 吕世琨, 胡居贵, 2004. 试论川滇黔菱形地块. 云南地质, 23 (2): 140-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200402002.htm
|
熊光楚, 谢德顺, 张文斌, 等, 1997. 新疆金属矿产快速勘查方法技术系统. 北京: 地质出版社.
|
庄永秋, 王任重, 杨树培, 等, 1996. 云南个旧锡铜多金属矿床. 北京: 地震出版社.
|