Citation: | CHEN Bei, HAN Bo, ZHOU Cheng-gang, WU Jin-ping, 2009. A Molecular Dynamics Simulation on the Agglomeration Behavior of Cu on TaN(111) Surface. Earth Science, 34(4): 635-640. |
Becker, J. S., Gordon, R. G., 2003. Diffusion barrier proper-ties of tungsten nitride fil ms grown by atomic layer dep-osition from bis (tert-butyli mido) bis (di methylamido) tungsten and ammonia. Applied Physics Letters, 82 (14): 2239-2241. doi: 10.1063/1.1565699
|
Besling, W. F. A., Federspiel, X., Vanypre, T., et al., 2005. Copper alloy seed integration for reliability i mprove-ment. Microelectronic Engineering, 82 (3-4): 254-260. doi: 10.1016/j.mee.2005.07.031
|
Guvelioglu, G. H., Ma, P., He, X., et al., 2006. First princi-ples studies on the growth of small Cu clusters and thedissociative chemisorption of H2. Physical Review B, 73 (15): 155436-155445. doi: 10.1103/PhysRevB.73.155436
|
Han, B., Wu, J., Zhou, C., et al., 2008. Ab initio moleculardynamics si mulation on the aggregation of a Cu mono-layer on a WN (001) surface. Journal of PhysicalChemistry C, 112 (26): 9798-9802.
|
Inberg, A., Shacham-Diamand, Y., Rabinovich, E., et al., 2001. Material and electrical properties of electrolessAg-Wthin fil m. J. Electron. Mater., 30 (4): 355-359. doi: 10.1007/s11664-001-0043-x
|
Jackson, R. L., Broadbent, E., Cacouris, T., et al., 1998. Processing andintegration of copper interconnects. Sol-id State Technology, 41 (33): 49-59.
|
Kaloyeros, A. E., Eisenbraun, E., 2000. Ultrathin diffusionbarriers/liners for gigascale copper metallization. Annu-al Reviewof Materials Science, 30 (1): 363-385. doi: 10.1146/annurev.matsci.30.1.363
|
Kim, H., Koseki, T., Ohba, T., et al., 2006. Effect of Rucrystal orientation on the adhesion characteristics of Cufor ultra-large scale integration interconnects. AppliedSurface Science, 252 (11): 3938-3942.
|
Kleinman, L., Bylander, D. M., 1982. Efficacious form formodel pseudopotentials. Physical Review Letters, 48 (20): 1425-1428. doi: 10.1103/PhysRevLett.48.1425
|
Kohn, W., 1999. Nobel lecture: Electronic structure of mat-ter-wave functions and density functionals. Reviews ofModern Physics, 71 (5): 1253-1266.
|
Li, B. Z., Sullivan, T. D., Lee, T. C., et al., 2004. Re liability challenges for copper interconnects. Microelectronics Reliability, 44 (3): 365-380. doi: 10.1016/j.microrel.2003.11.004
|
Li, Z., Gordon, R. G., Farmer, D. B., et al., 2005. Nucleationand adhesion of ALD copper on cobalt adhesion layersand tungsten nitride diffusion barriers. Electrochemica land Solid-State Letters, 8 (7): G182-G185. doi: 10.1149/1.1924929
|
Liu, H. T., Wu, Z. Q., 2001. Some issues of the materialphysics for ultra-large-scale integration-Cu interconnect & metallization (Ⅰ). Physics, 30 (12): 757-761 (inChinese with English abstract).
|
Machado, E., Kaczmarski, M., Ordejón, P., et al., 2005. First-principles analyses and predictions on the reactivi-ty of barrier layers of Ta and TaNtoward organometal-lic precursors for deposition of copper fil ms. Langmuir, 21 (16): 7608-7614. doi: 10.1021/la050164z
|
Murarka, S. P., Gut mann, R. J., Kaloyeros, A. E., et al., 1993. Advanced multilayer metallization schemes withcopper as interconnection metal. Thin Solid Fil ms, 236 (1-2): 257-266. doi: 10.1016/0040-6090(93)90680-N
|
Nicolet, M. A., 1978. Diffusion barriers in thin fil ms. ThinSolid Fil ms, 52 (3): 415-443.
|
Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalizedgradient approxi mation made si mple. Physical ReviewLetters, 77 (18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
|
Perdew, J. P., Wang, Y., 1992. Accurate and si mple analytic representation of the electron-gas correlation energy. Physical Review B, 45 (23): 13244-13249. doi: 10.1103/PhysRevB.45.13244
|
Rosenberg, R., Edelstein, D. C., Hu, C. K., et al., 2000. Copper metallization for high performance silicon tech-nology. Annual Reviewof Materials Science, 30: 229-262. doi: 10.1146/annurev.matsci.30.1.229
|
Sai-Halasz, G., 1995. Performance trends in high-end proces-sors. Proceedings of the IEEE, 83 (1): 20-36. doi: 10.1109/5.362754
|
Soler, J. M., Artacho, E., Gale, J. D., et al., 2002. The SIES-TA method for ab initio order-N materials si mulation. Journal of Physics: Condensed Matter, 14 (11): 2745-2779. doi: 10.1088/0953-8984/14/11/302
|
Torres, J., 1995. Advanced copper interconnections for sili-con CMOS technologies. Applied Surface Science, 91 (1-4): 112-123. doi: 10.1016/0169-4332(95)00105-0
|
Troullier, N., Martins, J. L., 1991. Efficient pseudopotentialsfor plane-wave calculations. Physical Review B, 43 (3): 1993-2006. doi: 10.1103/PhysRevB.43.1993
|
Wu, J. P., Han, B., Zhou, C., et al., 2007. Density functiontheory study of copper agglomeration on the WN (001) surface. Journal of Physical Chemistry C, 111 (26): 9403-9406. doi: 10.1021/jp072907q
|
Zhang, W. J., Yi, W. B., Wu, J., 2006. Electromigrationin Alinterconnects and the challenges in ultra-deep submi-cron technology. Acta Physica Sinica, 55 (10): 5424-5434 (in Chinese with English abstract). doi: 10.7498/aps.55.5424
|
Zhao, C., T kei, Z., Haider, A., et al., 2007. Failure mecha-nisms of PVD Ta and ALD TaN barrier layers for Cucontact applications. Microelectronic Engineering, 84 (11): 2669-2674. doi: 10.1016/j.mee.2007.05.061
|
刘洪图, 吴自勤, 2001. 超大规模集成电路的一些材料物理问题(Ⅰ)——Cu互连和金属化. 物理, 30 (12): 757-761. doi: 10.3321/j.issn:0379-4148.2001.12.005
|
张文杰, 易万兵, 吴瑾, 2006. 铝互连线的电迁移问题及超深亚微米技术下的挑战. 物理学报, 55 (10): 5424-5434. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200610073.htm
|