• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 34 Issue 4
    Jul.  2009
    Turn off MathJax
    Article Contents
    CHEN Bei, HAN Bo, ZHOU Cheng-gang, WU Jin-ping, 2009. A Molecular Dynamics Simulation on the Agglomeration Behavior of Cu on TaN(111) Surface. Earth Science, 34(4): 635-640.
    Citation: CHEN Bei, HAN Bo, ZHOU Cheng-gang, WU Jin-ping, 2009. A Molecular Dynamics Simulation on the Agglomeration Behavior of Cu on TaN(111) Surface. Earth Science, 34(4): 635-640.

    A Molecular Dynamics Simulation on the Agglomeration Behavior of Cu on TaN(111) Surface

    • Received Date: 2009-04-05
    • Publish Date: 2009-07-25
    • Cu seed layer agglomeration on barriers is a bottleneck in semiconductor industry for the application of atomic layer deposition (ALD) which is the preferred technology for the next-generation ultra large-scale integrated circuit (ULSC).However, the theoretical understanding of the underlying mechanisms of Cu aggregation is still not clearly known.We made a first-principles study of copper aggregation on the TaN (111) surface, using density functional theory.The adsorption energies and charge transfers were evaluated to address the interactions between Cu and the substrate.Ab initio molecular dynamics simulations were performed to examine the dynamic behavior of a copper monolayer originally commensurate with the TaN substrate at the typical atomic layer deposition (ALD) operating temperature (500 K).The results revealed that the copper film underwent substantial agglomeration on the TaN (111) surface at this ALD operating temperature, which was consistent with experimental observations.

       

    • loading
    • Becker, J. S., Gordon, R. G., 2003. Diffusion barrier proper-ties of tungsten nitride fil ms grown by atomic layer dep-osition from bis (tert-butyli mido) bis (di methylamido) tungsten and ammonia. Applied Physics Letters, 82 (14): 2239-2241. doi: 10.1063/1.1565699
      Besling, W. F. A., Federspiel, X., Vanypre, T., et al., 2005. Copper alloy seed integration for reliability i mprove-ment. Microelectronic Engineering, 82 (3-4): 254-260. doi: 10.1016/j.mee.2005.07.031
      Guvelioglu, G. H., Ma, P., He, X., et al., 2006. First princi-ples studies on the growth of small Cu clusters and thedissociative chemisorption of H2. Physical Review B, 73 (15): 155436-155445. doi: 10.1103/PhysRevB.73.155436
      Han, B., Wu, J., Zhou, C., et al., 2008. Ab initio moleculardynamics si mulation on the aggregation of a Cu mono-layer on a WN (001) surface. Journal of PhysicalChemistry C, 112 (26): 9798-9802.
      Inberg, A., Shacham-Diamand, Y., Rabinovich, E., et al., 2001. Material and electrical properties of electrolessAg-Wthin fil m. J. Electron. Mater., 30 (4): 355-359. doi: 10.1007/s11664-001-0043-x
      Jackson, R. L., Broadbent, E., Cacouris, T., et al., 1998. Processing andintegration of copper interconnects. Sol-id State Technology, 41 (33): 49-59.
      Kaloyeros, A. E., Eisenbraun, E., 2000. Ultrathin diffusionbarriers/liners for gigascale copper metallization. Annu-al Reviewof Materials Science, 30 (1): 363-385. doi: 10.1146/annurev.matsci.30.1.363
      Kim, H., Koseki, T., Ohba, T., et al., 2006. Effect of Rucrystal orientation on the adhesion characteristics of Cufor ultra-large scale integration interconnects. AppliedSurface Science, 252 (11): 3938-3942.
      Kleinman, L., Bylander, D. M., 1982. Efficacious form formodel pseudopotentials. Physical Review Letters, 48 (20): 1425-1428. doi: 10.1103/PhysRevLett.48.1425
      Kohn, W., 1999. Nobel lecture: Electronic structure of mat-ter-wave functions and density functionals. Reviews ofModern Physics, 71 (5): 1253-1266.
      Li, B. Z., Sullivan, T. D., Lee, T. C., et al., 2004. Re liability challenges for copper interconnects. Microelectronics Reliability, 44 (3): 365-380. doi: 10.1016/j.microrel.2003.11.004
      Li, Z., Gordon, R. G., Farmer, D. B., et al., 2005. Nucleationand adhesion of ALD copper on cobalt adhesion layersand tungsten nitride diffusion barriers. Electrochemica land Solid-State Letters, 8 (7): G182-G185. doi: 10.1149/1.1924929
      Liu, H. T., Wu, Z. Q., 2001. Some issues of the materialphysics for ultra-large-scale integration-Cu interconnect & metallization (Ⅰ). Physics, 30 (12): 757-761 (inChinese with English abstract).
      Machado, E., Kaczmarski, M., Ordejón, P., et al., 2005. First-principles analyses and predictions on the reactivi-ty of barrier layers of Ta and TaNtoward organometal-lic precursors for deposition of copper fil ms. Langmuir, 21 (16): 7608-7614. doi: 10.1021/la050164z
      Murarka, S. P., Gut mann, R. J., Kaloyeros, A. E., et al., 1993. Advanced multilayer metallization schemes withcopper as interconnection metal. Thin Solid Fil ms, 236 (1-2): 257-266. doi: 10.1016/0040-6090(93)90680-N
      Nicolet, M. A., 1978. Diffusion barriers in thin fil ms. ThinSolid Fil ms, 52 (3): 415-443.
      Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalizedgradient approxi mation made si mple. Physical ReviewLetters, 77 (18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
      Perdew, J. P., Wang, Y., 1992. Accurate and si mple analytic representation of the electron-gas correlation energy. Physical Review B, 45 (23): 13244-13249. doi: 10.1103/PhysRevB.45.13244
      Rosenberg, R., Edelstein, D. C., Hu, C. K., et al., 2000. Copper metallization for high performance silicon tech-nology. Annual Reviewof Materials Science, 30: 229-262. doi: 10.1146/annurev.matsci.30.1.229
      Sai-Halasz, G., 1995. Performance trends in high-end proces-sors. Proceedings of the IEEE, 83 (1): 20-36. doi: 10.1109/5.362754
      Soler, J. M., Artacho, E., Gale, J. D., et al., 2002. The SIES-TA method for ab initio order-N materials si mulation. Journal of Physics: Condensed Matter, 14 (11): 2745-2779. doi: 10.1088/0953-8984/14/11/302
      Torres, J., 1995. Advanced copper interconnections for sili-con CMOS technologies. Applied Surface Science, 91 (1-4): 112-123. doi: 10.1016/0169-4332(95)00105-0
      Troullier, N., Martins, J. L., 1991. Efficient pseudopotentialsfor plane-wave calculations. Physical Review B, 43 (3): 1993-2006. doi: 10.1103/PhysRevB.43.1993
      Wu, J. P., Han, B., Zhou, C., et al., 2007. Density functiontheory study of copper agglomeration on the WN (001) surface. Journal of Physical Chemistry C, 111 (26): 9403-9406. doi: 10.1021/jp072907q
      Zhang, W. J., Yi, W. B., Wu, J., 2006. Electromigrationin Alinterconnects and the challenges in ultra-deep submi-cron technology. Acta Physica Sinica, 55 (10): 5424-5434 (in Chinese with English abstract). doi: 10.7498/aps.55.5424
      Zhao, C., T kei, Z., Haider, A., et al., 2007. Failure mecha-nisms of PVD Ta and ALD TaN barrier layers for Cucontact applications. Microelectronic Engineering, 84 (11): 2669-2674. doi: 10.1016/j.mee.2007.05.061
      刘洪图, 吴自勤, 2001. 超大规模集成电路的一些材料物理问题(Ⅰ)——Cu互连和金属化. 物理, 30 (12): 757-761. doi: 10.3321/j.issn:0379-4148.2001.12.005
      张文杰, 易万兵, 吴瑾, 2006. 铝互连线的电迁移问题及超深亚微米技术下的挑战. 物理学报, 55 (10): 5424-5434. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200610073.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(2)

      Article views (4308) PDF downloads(157) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return