• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 34 Issue 5
    Sep.  2009
    Turn off MathJax
    Article Contents
    WANG Yu, HAN Li-guo, ZHOU Jia-xiong, LI Hai-peng, 2009. Application of Combined Norm Constrained Sparseness Spike Inverse. Earth Science, 34(5): 835-840.
    Citation: WANG Yu, HAN Li-guo, ZHOU Jia-xiong, LI Hai-peng, 2009. Application of Combined Norm Constrained Sparseness Spike Inverse. Earth Science, 34(5): 835-840.

    Application of Combined Norm Constrained Sparseness Spike Inverse

    • Received Date: 2009-01-23
    • Publish Date: 2009-09-25
    • Sparse-spike deconvolution is an inverse issue which estimates the time and the amplitudes of the sparseness reflectivity (spikes) from the noisy seismic traces.Sparseness spike inverse is highly non-linear optimization problem that can be solved using the L1-L2 norm constrained method introduced in this paper.This method is characterized with its application of the log-barrier interior point to solve the sparseness inverse problem which is higher in terms of resolution and faster than conventional optimization methods.Resultsfrom the synthetic and real 3D data show that the physically meaningful high-resolution sparse-spike profile can be derived from the band-limited noisy data.Real data show that the method improves seismic resolution and estimates the thickness of thin bed which can reduce the uncertainty of resource estimation and oil field production.

       

    • loading
    • Debeye, H. W. J., Van Riel, P., 1990. Lpnorm deconvolution. Geophysical Prospecting, 38 (4): 381-403. doi: 10.1111/j.1365-2478.1990.tb01852.x
      Gill, P. E., Murray, W., Ponceleon, D. B., et al., 1991. Solving reduced KKT systems in barrier methods for linearand quadratic programming. Techniccal Report SOL91-7, Stanford University, U. S. A. .
      Huang, H. X., Han, X. Y., 2006. Mathematic programming. Qinghua University Press (in Chinese).
      Kormylo, J., Mendel, J., 1978. On maximum-likelihood detection and estimation of reflection coefficients. 48th Annual International Meeting, SEG Expanded Abstracts, Tulsa, U. S. A., 45-46.
      Roos, C., Terlaky, T., Vial, J. P., 1997. Theory and algorithms for linear optimization: An interior point approach. Wiley, Chichester, UK.
      Sacchi, M. D., Velis, D. R., Comínguez, A. H., 1994. Mini-mumentropy deconvolution with frequency domain constraints. Geophysics, 59 (6): 938-945. doi: 10.1190/1.1443653
      Veeken, P. C. H., Da Silva, M., 2004. Seismic inversion methods and some of their constraints. First Break, 22: 47-72.
      Velis, D. R., 2006. Parametric sparse-spike deconvolutionand the recovery of the acoustic impedance. 76th Annual International Meeting, SEG Expanded Abstracts, Tulsa, U. S. A., 2141-2144.
      Wang, J., Wang, X., Perz, M., 2006. Structure preserving regularization for sparse deconvolution. 76th Annual International Meeting, SEG Expanded Abstracts, 25: 2072-2076.
      Widess, M. B., 1973. Howthinis a thin bed? Geophysics, 38 (6): 1176-1180.
      Wright, M. H., 1992. Interior methods for constrained opti-mization. Acta Numeica, 1: 341-407. doi: 10.1017/S0962492900002300
      Wright, S. J., 1996. Primaldual interiorpoint method. SI-AM, Philadelphia.
      Xu, G. M., 2003. Inverse theory and applications. Seismic Press (in Chinese).
      黄红选, 韩续业, 2006. 数学规划. 北京: 清华大学出版社.
      徐果明, 2003. 反演理论及其应用. 北京: 地震出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (4222) PDF downloads(141) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return