• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 32 Issue 2
    Mar.  2007
    Turn off MathJax
    Article Contents
    ZHANG Hong-fei, XU Wang-chun, GUO Jian-qiu, ZONG Ke-qing, CAI Hong-ming, YUAN Hong-lin, 2007. Indosinian Orogenesis of the Gangdise Terrane: Evidences from Zircon U-Pb Dating and Petrogenesis of Granitoids. Earth Science, 32(2): 155-166.
    Citation: ZHANG Hong-fei, XU Wang-chun, GUO Jian-qiu, ZONG Ke-qing, CAI Hong-ming, YUAN Hong-lin, 2007. Indosinian Orogenesis of the Gangdise Terrane: Evidences from Zircon U-Pb Dating and Petrogenesis of Granitoids. Earth Science, 32(2): 155-166.

    Indosinian Orogenesis of the Gangdise Terrane: Evidences from Zircon U-Pb Dating and Petrogenesis of Granitoids

    • Received Date: 2007-02-03
    • Publish Date: 2007-03-25
    • This paper reports LA-ICP-MS zircon U-Pb ages, whole-rock major and trace element and zircon Hf isotopic com- positions from two-mica granite and granodiorite plutons occurring in the middle part of the Gangdise terrane, Tibet. Magma zircons from the two-mica granite yielded a weighted 206Pb/238 U mean age of(205± 1)Ma(MSWD= 0.47), which is inter- preted as its magma crystallization age(Late Indosinian). The two-mica granite is strongly peraluminous, with Al index(A/ CNK)= 1.16 -1.20 and K2O/Na2O= 1.67 -1.95. The two-mica granite is characterized by enrichments of Rb, Th and U etc. Rare earth element(REE)data display Eu/Eu*= 0.29 -0.41 and(La/Yb)N= 22.62 -35.08.εHf(t)(205 Ma)values from the dated zircons range from -12.4 to -1.8. It is suggested that the magma for the two-mica granite was dominately derived from patial melting of argillaceous rocks in crust, induced by dehydration of mica minerals. The petrogenesis of the two-mica granite is similar to that of the Himalayan Tertiary leucogranites. Magma zircons from the granodiorite yielded a weighted 206Pb/238 U age of(202± 1)Ma, representing its magma crystallization age. The granodiorite is metaluminous, with Al index(A/CNK)= 0.96 -0.98, K2O/Na2O= 1.42 -1.77. REE data show Eu/Eu* = 0.54 -0.65 and(La/Yb)N= 6.76 -13.35. Dated zircon Hf isotopic compositions exhibitεHf(202 Ma)values ranging from -8.2 to -5.5. The geo- chemical signatures and zircon Hf isotopic compositions suggest that the magma of granodiorite formed by partial melting of basaltic rocks in crust. The Late Indosinian stronlgly peralumineous granite is the first report in the Gangdise terrane. The occurring of the stronlgly peralumineous granite reveals Gangdise crustal thickening prior to Late Indosinian, and gives an impelling evidence that the Gangdise terrane took place an Early Indosinian orogenic event.

       

    • loading
    • Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. , 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X
      Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kbar. Journal of Petrology, 32: 365-402. doi: 10.1093/petrology/32.2.365
      Blichert-Toft, J., Albarede, F., 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. , 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X
      Chu, M.F., Chung, S.L., Song, B., et al., 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34: 745-748. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/34/9/745/129621/Zircon-U-Pb-and-Hf-isotope-constraints-on-the
      Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. Atom. Spectrom. , 17: 1567-1574. doi: 10.1039/b206707b
      Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68: 173-196.
      Chung, S.L., Dunyi, L., Ji, J., et al., 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/31/11/1021/29168/Adakites-from-continental-collision-zones-Melting
      DeBievre, P., Taylor, P.D. P., 1993. Table of the isotopic composition of the elements. Int. J. Mass. Spectrom. Ion Process, 123: 149. doi: 10.1016/0168-1176(93)87009-H
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes. Tonglu and Pingtan igneous complexes. Lithos, 61: 237-269. https://www.sciencedirect.com/science/article/pii/S0024493702000828
      Harris, N., Ayres, M., Massey, J., 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: Implication for the extraction of Himalayan leucogranite mamas. Journal of Geophysical Research, 100: 15767-15777. doi: 10.1029/94JB02623
      Harris, N., Inger, S., 1992. Trace element modeling of pelitederived granites. Contrib Mineral Petrol, 110: 46-56. doi: 10.1007/BF00310881
      Harrison, T.M., Lovera, O.M., Grove, M., 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25: 899-902. https://pubs.geoscienceworld.org/gsa/geology/article/25/10/899/187693/New-insights-into-the-origin-of-two-contrasting
      He, Z.H., Yang, D.M., Zheng, C.Q., et al., 2006. Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the Neotethys. Geological Review, 52: 100-106(in Chinese with English abstract).
      Helz, R.T., 1976. Phase relations of basalts in their melting ranges at pH2O= 5 kar, part II: Melt compositions. Journal of Petrology, 17: 139-193. doi: 10.1093/petrology/17.2.139
      Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of adakitic intrusives generated during mid-Miocene eastwest extension in southern Tibet. Earth Planet. Sci. Lett. , 220: 139-155. doi: 10.1016/S0012-821X(04)00007-X
      Inger, S., Harris, N., 1993. Geochemical constrains on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34: 345-368. doi: 10.1093/petrology/34.2.345
      Kapp, J., Harrison, T.M., Kapp, P., et al., 2005. Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research, 110: B08413(1-23). doi: 10.1029/2004JB003330
      Li, C., Wang, T.W., Li, H.M., et al., 2003. Discovery of Indosinian megaporphyritic granodiorite in the Gangdise area: Evidence for the existence of Paleo-Gangdise. Geological Bulletin of China, 22: 364-366(in Chinese with English abstract).
      Ludwig, K.R., 2001. Users manual for Isoplot/Ex(rev. 2. 49): A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, 55.
      Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdise, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11: 281-290(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200503001.htm
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos(in press).
      Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatialtemporal framework of the Gangdise orogenic belt and its evolution. Acta Petrologica Sinica, 22: 521-533(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603001.htm
      Patino-Douce, A. E., Harris, N., 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39: 689-710. doi: 10.1093/petroj/39.4.689
      Rushmer, T., 1991. Partial melting of two amphibolites: Contrasting experimental results under fluid absent conditions. Contrib Mineral Petrol, 107: 41-59. doi: 10.1007/BF00311184
      Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science, 293: 683-687. doi: 10.1126/science.1061372
      Searle, M.P., Parrish, R.R., Hodges, K.V., et al., 1997. Shisha pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin and emplacement. The Journal of Geology, 105: 295-317. doi: 10.1086/515924
      Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sunders, A.D., Norry, M.J., eds., Magmatism in the ocean basins. London: Special Publications, 42: 313-345.
      Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3
      Taylor, S. R., McLennan, S. M., 1985. The continental crust: Its composition and evolution. Oxford: Blackwell Scientific Publication, 1-132.
      Tepper, J.H., Nelson, B.K., Bergantz, G.W., 1993. Petrology of the chilliwack batholith, North Cascades, Washington: Generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contrib Mineral Petrol, 113: 333-351. doi: 10.1007/BF00286926
      Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta, 63: 533-556. doi: 10.1016/S0016-7037(98)00274-9
      Visona, D., Lombardo, B., 2002. Two-mica and tourmaline leucogranites from the Everest-Makalu region(NepalTibet): Himalayan leucogranite genesis by isobaric heating. Lithos, 62: 125-150. doi: 10.1016/S0024-4937(02)00112-3
      White, A.J.R., Chappell, B.W., 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43: 7-22. doi: 10.1016/0040-1951(77)90003-8
      Wolf, M.B., Wyllie, P.J., 1992. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kbar. Eos, 70: 506-518.
      Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. , 232: 105-126. https://www.sciencedirect.com/science/article/pii/S0009254106002452
      Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate UPb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand. Newsl. , 28: 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
      Zhai, Q.G., Li, C., Li, H.M., et al., 2005. U-Pb zircon age of leucogranite in the central Gangdise, Tibet, and its geological significance. Geological Bulletin of China, 24: 349-353(in Chinese with English abstract).
      Zhang, G. W., Guo, A. L., Yao, A. P., 2004. Western Qinling-Songpan continental tectonic node in China's continental tectonics. Earth Science Frontiers, 11: 23-32(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403004.htm
      Zhang, H.F., Gao, S., Zhong, Z.Q., et al., 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh pressure metamorphic belt, China. Chem. Geol. , 186: 281-299. doi: 10.1016/S0009-2541(02)00006-2
      Zhang, H.F., Harris, N., Parrish, R., et al., 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planetary Science Letters, 228: 195-212. doi: 10.1016/j.epsl.2004.09.031
      Zhang, H.F., Harris, N., Parrish, R., et al., 2005. Geochemistry of North Himalayan leucogranites: Regional comparison, petrogenesis and tectonic implications. Earth Science— Journal of China University of Geosciences, 30(3): 275-288(in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-IGQM200408001058.htm
      和钟铧, 杨德明, 郑常青, 等, 2006. 冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束. 地质论评, 52: 100-106. doi: 10.3321/j.issn:0371-5736.2006.01.013
      李才, 王天武, 李惠民, 等, 2003. 冈底斯地区发现印支期巨斑花岗闪长岩: 古冈底斯造山的存在证据. 地质通报, 22: 364-366. doi: 10.3969/j.issn.1671-2552.2003.05.011
      莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11: 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22: 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      翟庆国, 李才, 李惠民, 等, 2005. 西藏冈底斯中部淡色花岗岩锆石U-Pb年龄及其地质意义. 地质通报, 24: 349-353. doi: 10.3969/j.issn.1671-2552.2005.04.008
      张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭松潘大陆构造结. 地学前缘, 11: 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004
      张宏飞, Harris, N., Parrish, R., 等, 2005. 北喜马拉雅淡色花岗岩地球化学: 区域对比、岩石成因及其构造意义. 地球科学——中国地质大学学报, 30(3): 275-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (3781) PDF downloads(292) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return