• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 32 Issue 4
    Jul.  2007
    Turn off MathJax
    Article Contents
    DIAO Bo, WANG Jia-lin, CHENG Shun-you, 2007. The Confirmation of Decomposition Level in Wavelet Multi-Resolution Analysis for Gravity Anomalies. Earth Science, 32(4): 564-568.
    Citation: DIAO Bo, WANG Jia-lin, CHENG Shun-you, 2007. The Confirmation of Decomposition Level in Wavelet Multi-Resolution Analysis for Gravity Anomalies. Earth Science, 32(4): 564-568.

    The Confirmation of Decomposition Level in Wavelet Multi-Resolution Analysis for Gravity Anomalies

    • Received Date: 2006-12-31
    • Publish Date: 2007-07-25
    • How to confirm the decomposition level is a basic issue in wavelet multi-resolution analysis for gravity anomalies. In this paper, the relations between the decomposition level and the length of signal, and the relations between the decomposition level and the support width of mother wavelets are discussed. Based on the comparison between the result of wavelet multi-resolution analysis for Bouger gravity anomalies in Tarim basin and Tianshan orogenic belt and the fearures of corresponding geoid anomaly, the authors proposed a method for confirming the decomposition level. Using bior3.5 wavelet, the 5th level detail can avoid the interference of wavelet generating functions and thereby its result accords with the features of corresponding geoid anomaly. However, there are many differences between the 6th and its corresponding geoid anomaly. Therefore, in terms of signal processing and geophysics theory, the proper decomposition level is 5, and any higher-level decomposition is unreasonable. All these researches have contributed a lot to confirming the decomposition level in processing gravity anomalies by providing effective and feasible methods.

       

    • loading
    • Bowin, C., 1986. Depth estimates fromratios of gravity, geoid, and gradient anomalies. Geophysics, 51 (1): 123-136. doi: 10.1190/1.1442025
      Cheng, Z. X., 1998. Algorithms and applications of the Wavelet analysis. Xi′an Jiaotong University Press, Xi′an (in Chinese).
      Grossman, A., Morlet, J., 1984. Decomposition of Hardy function into square integrable wavelets of constant shape. J. Math. Anal. , 15: 723-736.
      Li, J., Zhou, Y. X., Xu, H. P., et al., 2001. The selection of wavelet generating functions in data-processing of gravity field. Geophysical & Geochemical Exploration, 25 (6): 410-417 (in Chinese with English abstract).
      Liu, T. Y., Wu, Z. C., Zhan, Y. L., et al., 2007. Wavelet multi-scale decomposition of magnetic anomaly and its application in searching for deep-buried minerals in crisis mines: A case study from Daye iron mines. Earth Science—Journal of China University of Geosciences, 32 (1): 135-140.
      Lou, H., Wang, C. Y., 2005. Wavelet analysis and interpre-tation of gravity data in Sichuan-Yunnan region, China. Acta Seismologica Sinica, 27 (5): 515-523 (in Chinese with English abstract).
      Luděk, V., Catherine, A., Hier, M., et al., 2003. Multiresolution tectonic features over the Earth inferred from a wavelet transformed geoid. Visual Geosciences, 8: 26-44.
      Mallat, S., 1989. A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Trapson PAMI, 11 (7): 674-693. doi: 10.1109/34.192463
      Mallat, S., 2002. A Wavelet tour of signal processing (Second edition). Translated by Yang, L. H., Dai, D. Q., Huang, W. L., et al. . China Machine Press, Beijing (in Chinese).
      Michel, M., Yves, M., Georges, O., et al., 2004. Wavelet toolbox user's guide (Version 3). The Mathworks Inc., Massachusetts.
      Yang, W. C., Shi, Z. Q., Hou, Z. Z., et al., 2001. Discrete wavelet transform for multiple decomposition of gravity anomalies. Chinese J. Geophys. , 44 (4): 534-541 (in Chinese with English abstract).
      Yin, X. H., Li, Y. S., Liu, Z. P., 1998. Gravity field and crust-upper mantle structure over the Tarim basin. Seismology and Geology, 20 (4): 370-378 (in Chinese with English abstract).
      程正兴, 1998. 小波分析算法与应用. 西安: 西安交通大学出版社.
      李健, 周云轩, 许惠平, 等, 2001. 重力场数据处理中小波母函数的选择. 物探与化探, 25 (6): 410-417. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200106002.htm
      刘天佑, 吴招才, 詹应林, 等, 2007. 磁异常小波多尺度分解及危机矿山的深部找矿: 以大冶铁矿为例. 地球科学——中国地质大学学报, 32 (1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701020.htm
      楼海, 王椿镛, 2005. 川滇地区重力异常的小波分解与解释. 地震学报, 27 (5): 515-523. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200505005.htm
      Mallat, S., 2002. 信号处理的小波导引(第2版). 杨力华, 戴道清, 黄文良, 等, 译. 北京: 机械工业出版社.
      杨文采, 施志群, 侯遵泽, 等, 2001. 离散小波变换与重力异常多重分解. 地球物理学报, 44 (4): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200104011.htm
      殷秀华, 黎益仕, 刘占坡, 1998. 塔里木盆地重力场与地壳上地幔结构. 地震地质, 20 (4): 370-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ804.010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(1)

      Article views (3293) PDF downloads(210) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return