• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 32 Issue 6
    Jun.  2007
    Turn off MathJax
    Article Contents
    ZHOU Lian, ZHOU Hong-bing, LI Mo, WANG Feng, Archer Corey, 2007. Molybdenum Isotope Signatures from Yangtze Craton Continental Margin and Its Indication to Organic Burial Rate. Earth Science, 32(6): 759-766.
    Citation: ZHOU Lian, ZHOU Hong-bing, LI Mo, WANG Feng, Archer Corey, 2007. Molybdenum Isotope Signatures from Yangtze Craton Continental Margin and Its Indication to Organic Burial Rate. Earth Science, 32(6): 759-766.

    Molybdenum Isotope Signatures from Yangtze Craton Continental Margin and Its Indication to Organic Burial Rate

    • Received Date: 2007-08-05
    • Publish Date: 2007-11-25
    • The paper presents the molybdenum isotope data, along with the trace element content, to investigate the geochemical behavior of authigenic Mo during long-term burial in sediments in continental margin settings of Yangtze craton, as well as their indication to the burial of original organic carbon. The burial rate of original organic carbon was estimated on the basis of the amount of sedimentary sulphur (TS content), whilst the carbon loss by aerobic degradation was estimated according to calculated Mn contents. On these points, the original organic carbon flux was calculated, exhibiting a large range of variation (0.17-0.67 mmol/m2/day). The strong correlation between sedimentary Mo isotope values and organic carbon burial rates previously proposed on the basis of the investigations on modern ocean sediments, was also used here to estimate the organic carbon burial rate. The data gained through this model showed that organic carbon burial rates have large variations, ranging from 0.43-2.87 mmol/m2/day. Although the two sets of data gained through different geochemical records in the Yangtze craton show a deviation of one order of magnitude, they do display a strong correlation. It is thus tempting to speculate that the Mo isotope signature of sediments may serve as a tracer for the accumulation rate of original organic carbon in the continental margin sediments.

       

    • loading
    • Algeo, T. J., Lyons, T. W., 2006. Mo-total organic carbon covariationin modern anoxic marine environments: Im-plications for analysis of paleoredox and paleohydro-graphic conditions. Paleoceanography, 21, PA1016. doi: 10.1029/2004PA001112.
      Anderson, R. F., Lehuray, A. P., Fleisher, M. Q., et al., 1989. Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochimicaet Cosmochimica Acta, 53 (9): 2205-2213. doi: 10.1016/0016-7037(89)90344-X
      Anderson, R. F., Kumar, N., Mortlock, R. A., et al., 1998. Late-Quaternary changes in productivity of the southern ocean. Journal of Marine Systems, 17 (1-4): 497-514. doi: 10.1016/S0924-7963(98)00060-8
      Arnold, G. L., Anbar, A. D., Barling, J., et al., 2004. Molyb-denum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science, 304 (5667): 87-90. doi: 10.1126/science.1091785
      Barling, J., Arnold, G. L., Anbar, A. D., 2001. Natural mass-dependent variations in the isotopic composition of mo-lybdenum. Earth and Planetary Science Letters, 193 (3-4): 447-457. doi: 10.1016/S0012-821X(01)00514-3
      Beard, B. L., Johnson, C. M., Cox, L., et al., 1999. Iron iso-tope biosignatures. Science, 285 (5435): 1889-1892. doi: 10.1126/science.285.5435.1889
      Bertine, K. K., Turekian, K. K., 1973. Molybdenumin ma-rine deposits. Geochimicaet Cosmochimica Acta, 37 (6): 1415-1434. doi: 10.1016/0016-7037(73)90080-X
      Bralower, T. J., Thierstein, H. R., 1984. Low productivity and slow deep-water circulation in Mid-Cretaceous oceans. Geology, 12 (10): 614-618. doi: 10.1130/0091-7613(1984)12<614:LPASDC>2.0.CO;2
      Brumsack, H. J., Gieskes, M., 1983. Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Marine Chemistry, 14 (1): 89-106. doi: 10.1016/0304-4203(83)90072-5
      Brumsack, H. J., 1986. The inorganic geochemistry of Creta-ceous black shales (DSDP Leg 41) in comparison tomodern upwelling sediments from the Gulf of Califor-nia. In: Summerhayes, C. P., Shackleton, N. J., eds., North Atlantic palaeoceanography. Geol. Soc. London, Spec. Publ., 21: 447-462.
      Bureau of Geology and Mineral Resources of Shaanxi Prov-ince, 1989. Shanxi regional geology. Geological Publish-ing House, Beijing, l-258 (in Chinese).
      Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of recentoxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113 (1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T
      Cochran, J. K., Carey, A. E., Sholkovitz, E. R., et al., 1986. The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochimicaet Cosmochimica Acta, 50 (5): 663-680. doi: 10.1016/0016-7037(86)90344-3
      Crusius, J., Calvert, S. E., Pedersen, T. F., et al., 1996. Rhe-niumand molybdenum enrichment in sediments as indi-cators of oxic, suboxic and sulfidic conditions of deposi-tion. Earth and Planetary Science Letters, 145 (1-4): 65-78. doi: 10.1016/S0012-821X(96)00204-X
      Dudo, A., Odor, L., 1980. Abetemetodesi melyseg es a kompakcios viz mennyisegenek becslese a terfogatsuly ertekek segitsegevel (Dunantuli Kozephegyseg). Foldt. Int. Evi. Jel. , 1978: 291-299.
      Dunk, R. M., Mills, R. A., Jenkins, W. J., 2002. A reevalu-ation of the oceanic uranium budget for the Holocene. Chemical Geology, 190 (1-4): 45-67. doi: 10.1016/S0009-2541(02)00110-9
      Emerson, S. R., Huested, S. S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadiumin seawa-ter. Marine Chemistry, 34 (3-4): 177-196. doi: 10.1016/0304-4203(91)90002-E
      Erickson, B. E., Helz, G. R., 2000. Molybdenum (Ⅵ) specia-tion in sulfidic waters: Stability and lability of thiomo-lybdates. Geochimicaet Cosmochimica Acta, 64: 1149-1158. doi: 10.1016/S0016-7037(99)00423-8
      Gao, S., 1989. Structure, composition and evolution of the continental crust in the Qinling orogenic belt and its ad-jacent North China and Yangtze cratons (Dr. Sci. The-sis) China University of Geosciences, Wuhan, 20-50 (in Chinese with English abstract).
      Helz, G. R., Miller, C. V., Charnock, J. M., et al., 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimicaet Cosmochimica Acta, 60: 3631-3642. doi: 10.1016/0016-7037(96)00195-0
      Herbert, T. D., Stallard, R. F., Fischer, A. G., 1986. Anoxicevents, productivity rhythms and the orbital signature in a Mid-Cretaceous deep-sea sequence from central Italy. Paleoceanography, 1 (4): 495-506. doi: 10.1029/PA001i004p00495
      Isla, E., Masque, P., Palanques, A., et al., 2002. Sediment accumulation rates and carbon burial in the bottomsedi-ment in a high-productivity area: Gerlache Strait (Ant-arctica). Deep-Sea Research Ⅱ: Topical Studies in O-ceanography, 49 (16): 3275-3287. doi: 10.1016/S0967-0645(02)00083-8
      Jiang, S. Y., Woodhead, J., Yu, J. M., et al., 2002. A recon-naissance of Cu isotopic compositions of hydrothermal vein-type copper deposit, Jinman, Yunnan, China. Chi-nese Science Bulletin, 47: 247-250. doi: 10.1360/02tb9059
      Jorgensen, B. B., 2001. Mineralization of organic matter in seabed: The role of sulfate reduction. Nature, 296: 643-645.
      Ku, T. L., Knauss, K., Mathieu, G. G., 1977. Uranium in the open ocean: Concentration and isotopic composition. Deep-Sea Research, 24 (11): 1005-1017. doi: 10.1016/0146-6291(77)90571-9
      Marechal, C. N., Telouk, P., Albarede, F., et al., 1999. Pre-cise analysis of copper and zinc isotopic compositions byplasma-source mass spectrometry. Chemical Geology, 156 (1-4): 251-273. doi: 10.1016/S0009-2541(98)00191-0
      Martin, W. R., Bender, M., 1991. Benthic organic carbon degradation and biogenic silica dissolutionin the center-al equatorial Pacific. Deep-Sea Research, 38: 1481-1516. doi: 10.1016/0198-0149(91)90086-U
      Mc Manus, J., William, M., Berelson, S. S., et al., 2006. Mo-lybdenumand uranium geochemistry in continental mar-gin sediments: Paleoproxy potential. Geochimicaet Cos-mochimica Acta, 70: 4643-4662. doi: 10.1016/j.gca.2006.06.1564
      Middleburg, J. J., 1989. A simple model for organic matter decomposition in marine sediments. Geochimicaet Cos-mochimica Acta, 53: 1577-1581. doi: 10.1016/0016-7037(89)90239-1
      Mo, T., Suttle, A. D., Sackett, W. M., 1973. Uraniumcon-centrations in marine sediments. Geochimicaet Cosmo-chimica Acta, 37: 35-51. doi: 10.1016/0016-7037(73)90242-1
      Morford, J. L., Emerson, S. R., 1999. The geochemistry ofredox sensitive trace metals in sediments. Geochimicaet Cosmochimica Acta, 63: 1735-1750. doi: 10.1016/S0016-7037(99)00126-X
      Shimmield, G. B., Price, N. B., 1986. The behavior of molyb-denum and manganese during early sediment diagene-sis: Offshore Baja California, Mexico. Marine Chemis-try, 19 (3): 261-280. doi: 10.1016/0304-4203(86)90027-7
      Siebert, C., McManus, J., Bice, A., et al., 2006. Molybde-num isotope signatures in continental margin marinesediments. Earth and Planetary Science Letters, 241: 723-733. doi: 10.1016/j.epsl.2005.11.010
      Siebert, C., Nagler, T. F., von Blanckenburg, F., et al., 2003. Molybdenum isotope records as a potential proxy for paleoceanography. Earth and Planetary Science Letters, 211: 159-171. doi: 10.1016/S0012-821X(03)00189-4
      Stephen, R. M., Bradley, B., Sageman, T. W. L., 2005. Or-ganic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 20, PA2002, doi: 10.1029/2004PA001068.
      Suess, E., 1980. Particulate organic carbon flux in theoceans-surface productivity and oxygen utilization. Na-ture, 288: 260-263.
      Vetö, I., Demeny, A., Hertelendi, E., et al., 1997. Esti ma-tion of pri mary productivity in the Toarcian Tethys: Anovel approach based on TOC, reduced sulphur and manganese contents. Palaeogeography, Palaeoclima-tology, Palaeoecology, 132 (1-4): 355-371. doi: 10.1016/S0031-0182(97)00053-9
      Vetö, I., Hetenyi, M., Demeny, A., et al., 1995. Hydrogen index as reflecting sulphidic diagenesis in non-bioturbat-ed shales. Org. Geochem. , 22: 299-310.
      Vetö, I., Péter, O., István, F., et al., 2007. Extension of car-bon flux estimation to oxic sediments based on sulphur geochemistry and analysis of benthic foraminiferal as-semblages: A case history from the Eocene of Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 248: 119-144. doi: 10.1016/j.palaeo.2006.12.001
      Vorlicek, T. P., Helz, G. R., 2002. Catalysis by mineral sur-faces: Implications for Mo geochemistry in anoxic envi-ronments. Geochimicaet Cosmochimica Acta, 66: 3679-3692. doi: 10.1016/S0016-7037(01)00837-7
      Werne, J. P., Sageman, B. B., Lyons, T. W., et al., 2002. Anintegrated assessment of a "type euxinic" deposit: Evi-dence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. Am. J. Sci. , 302: 110-143. doi: 10.2475/ajs.302.2.110
      Wilde, P., Lyons, T. W., Quinby-Hunt, M. S., 2004. Organic carbon proxies in black shales: Molybdenum. Chemical Geology, 206 (3-4): 167-176. doi: 10.1016/j.chemgeo.2003.12.005
      Zheng, G. X., Song, J. M., Dai, J. C., 2006. Migration and transformation of marine carbon and related chemical driving factors. Chinese Journal of Applied Ecology, 17 (4): 740-746 (in Chinese with English abstract).
      Zheng, Y., Anderson, R. F., Van Geen, A., et al., 2002. Preservation of particulate non-lithogenic uranium inmarine sediments. Geochimicaet Cosmochimica Acta, 66: 3085-3092. doi: 10.1016/S0016-7037(01)00632-9
      Zheng, Y., Anderson, R. F., Van Geen, A., et al., 2000. Au-thigenic molybdenumformation in marine sediments: Alink to pore water sulfide in the Santa Barbara basin. Geochimicaet Cosmochimica Acta, 64: 4165-4178. doi: 10.1016/S0016-7037(00)00495-6
      Zhu, X. K., O'Nions, R. K., Guo, Y., et al., 2000. Determina-tion of natural Cu-isotope variation by plasma-sourcemass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163 (1-4): 139-149. doi: 10.1016/S0009-2541(99)00076-5
      [139]
      高山, 1989. 秦岭造山带及其邻区大陆地壳结构、成分与演化的地球化学研究. 博士学位论文. 武汉: 中国地质大学, 20-50.
      陕西省地质矿产局, 1989. 陕西省区域地质志. 北京: 地质出版社, 1-258.
      郑国侠, 宋金明, 戴纪翠, 2006. 海洋碳迁移转化与主要化学驱动因子的相互关系. 应用生态学报, 17 (4): 740-746. doi: 10.3321/j.issn:1001-9332.2006.04.035
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (3394) PDF downloads(189) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return