• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 25 Issue 1
    Jan.  2000
    Turn off MathJax
    Article Contents
    DENG Jun, YANG Li-qiang, ZHAI Yu-sheng, SUN Zhong-shi, CHEN Xue-ming, 2000. THEORETICAL FRAMEWORK AND METHODOLOGICAL SYSTEM OF TECTONICS-FLUIDS-MINERALIZATION SYSTEM AND DYNAMICS. Earth Science, 25(1): 71-78.
    Citation: DENG Jun, YANG Li-qiang, ZHAI Yu-sheng, SUN Zhong-shi, CHEN Xue-ming, 2000. THEORETICAL FRAMEWORK AND METHODOLOGICAL SYSTEM OF TECTONICS-FLUIDS-MINERALIZATION SYSTEM AND DYNAMICS. Earth Science, 25(1): 71-78.

    THEORETICAL FRAMEWORK AND METHODOLOGICAL SYSTEM OF TECTONICS-FLUIDS-MINERALIZATION SYSTEM AND DYNAMICS

    • Received Date: 1999-07-06
    • Publish Date: 2000-01-25
    • This paper presents the advances and trends of the research into tectonics-fluids-mineralization system and dynamics. On this basis, this paper tentatively proposes the theoretical framework and methodological system of the tectonics-fluids-mineralization system and dynamics. The tectonics-fluids-mineralization system is defined as an entity comprising of all geological factors and processes controlling and transforming the formation and preservation of ore deposits and their products. With tectonics-fluids playing a leading role, this system is also defined as a complex dynamic system occurring in a certain spatial-temporal zone and consisting of the coupling and telescoping of components and processes. The corresponding dynamics is defined here as the dynamic system/mechanism of mineralization system settings, mineralization system itself and ore-forming materials. This system includes the kinetic and geometric features of ore-forming structures, fluids and materials, and the differences between ore-forming process, potential to accumulate ore-forming materials and ore-forming products. This system highlights the importance of tectonics and fluids in the ore-forming process and stresses the entity and comprehensive effects initiated by the coupling and telescoping of components and processes. In this sense, this paper points out that the tectonics-fluids-mineralization system is characterized by gradation-entity, complexity, self-organizing criticality, network, orientation and optimum structure with the gradation-entity the most important feature. Guided by the theory about this system, the authors of the present paper propose that the tectonics-fluids-mineralization system and its dynamics should be viewed as a whole body and the formation process and dynamic feature of the tectonics -fluids-mineralization system should be under investigation in terms of the interaction between fluids and petrology-tectonic environment and also of the evolution of the tectonics-fluids. Following the principle of practice-recognition-re-practice-re-recognition and guided by the macroscopic theory of entity based on the multi-discipline researches, this paper presents the deep analysis of the principle of the spatial-temporal trace of a typical mineralization system that was viewed between the microscopic and macroscopic extremes. The principle thus concluded can be used to guide the research into the microscopic mineralization process and mechanism, to actualize the system, entity, and quantification of the present research, and to understand within a wider range and a deeper layer the spatial-temporal structure and nature of the tectonics-fluids-mineralization system.

       

    • loading
    • [1]
      翟裕生. 矿床地质学的发展前景和思维方法[ J]. 地学前缘, 1994, 1(3): 1~8. doi: 10.3321/j.issn:1005-2321.1994.03.001
      [2]
      翟裕生. 关于构造-流体-成矿作用研究的几个问题[J]. 地学前缘, 1996, 3(4): 230~ 236. doi: 10.3321/j.issn:1005-2321.1996.04.010
      [3]
      翟裕生. 地史中成矿演化的趋势和阶段性[ J]. 地学前缘, 1997, 4(3~ 4): 197~ 203. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z2.034.htm
      [4]
      翟裕生. 古大陆边缘构造演化和成矿系统[A]. 见: 北京大学地质系编. 北京大学国际地质科学学术研讨会论文集[C]. 北京: 地震出版社, 1998. 769~ 778.
      [5]
      翟裕生. 论成矿系统[ J]. 地学前缘, 1999, 6(1): 13~ 28. doi: 10.3321/j.issn:1005-2321.1999.01.002
      [6]
      翟裕生, 邓军, 李晓波. 区域成矿学[M ]. 北京: 地质出版社, 1999.1~287.
      [7]
      翟裕生, 邓军, 李晓波. 区域成矿学[M]. 北京: 地质出版社, 1999. 1~ 287.
      [8]
      翟裕生. 矿床的环境质量———一个新的地学研究领域[J]. 现代地质, 1998, 12(4): 462~ 466. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ804.001.htm
      [9]
      李人澍. 成矿系统分析的理论与实践[M]. 北京: 地质出版社, 1996. 1~ 180.
      [10]
      邓军, 翟裕生, 杨立强, 等. 论剪切带构造成矿系统[ J]. 现代地质, 1998, 12(4): 493~ 500. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ804.005.htm
      [11]
      邓军, 翟裕生, 杨立强, 等. 剪切带构造-流体-成矿系统动力学模拟[J]. 地学前缘, 1999, 6(1): 115~ 127. doi: 10.3321/j.issn:1005-2321.1999.01.010
      [12]
      於崇文, 岑况, 鲍征宇, 等. 热液成矿作用动力学[ M]. 武汉: 中国地质大学出版社, 1993. 1~ 218.
      [13]
      於崇文. 成矿作用动力学———理论体系和方法论[ J]. 地学前缘, 1994, 1(3): 54~ 82. doi: 10.3321/j.issn:1005-2321.1994.03.006
      [14]
      於崇文, 岑况, 鲍征宇, 等. 成矿作用动力学[M]. 北京: 地质出版社, 1998. 1~ 230.
      [15]
      於崇文. 固体地球系统的复杂性与自组织临界性[ J]. 地学前缘, 1998, 5(3~ 4): 159~ 182, 347~ 368. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY803.022.htm
      [16]
      於崇文. 大型矿床和成矿区带在混沌边缘[ J]. 地学前缘, 1999, 6(1~ 2): 85~ 102, 195~ 230. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY901.012.htm
      [17]
      杨巍然, 张文淮. 构造流体———一个新的研究领域[ J]. 地学前缘, 1996, 3(3): 124~ 130. doi: 10.3321/j.issn:1005-2321.1996.03.013
      [18]
      孙雄, 马宗晋, 洪汉净. 初论"构造流体动力学"[ J]. 地学前缘, 1996, 3(3): 138~ 144. doi: 10.3321/j.issn:1005-2321.1996.03.015
      [19]
      毕思文. 地球内部流体系统科学统一理论[ J]. 地学前缘, 1996, 3(3): 1~ 8. doi: 10.3321/j.issn:1005-2321.1996.03.001
      [20]
      张文淮, 张志坚, 伍刚. 成矿流体及成矿机制[ J]. 地学前缘, 1996, 3(4): 245~ 252. doi: 10.3321/j.issn:1005-2321.1996.04.012
      [21]
      贾跃明. 流体成矿系统与成矿作用研究[ J]. 地学前缘, 1996, 3(4): 253~ 258. doi: 10.3321/j.issn:1005-2321.1996.04.013
      [22]
      Kutina J. The role of Mantle_rooted structural discontinu- ities in concentration of metals[J]. Global Tectonics and Metallogeny, 1996, (5): 79~ 102.
      [23]
      O'Driscoll E S T, Campbell I B. Ore deposits related to Australian continent rifts and ring structure[ J]. Global Tectonics and Metallogeny, 1996, (2):
      [24]
      Hutchison C S. Economic deposits and their tectonic set- ting[M]. New York: Macmillan, 1994. 391.
      [25]
      Zhai Y S, Deng J. An outline of mineral resources of Chi- na and their tectonic setting[ J]. Australian Journal of Earth Sciences, 1996, 43: 673~ 685. doi: 10.1080/08120099608728286
      [26]
      Zhai Y S. Giant ore deposits related to deep structure in and around the North China Block[ J]. Global Tectonics and Metallogeny, 1998, 6(3~ 4): 173~ 175.
      [27]
      涂光炽. 关于超大型矿床的寻找和理论研究[ J]. 矿物岩石地球化学, 1989, (2): 88~ 91. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH198903000.htm
      [28]
      涂光炽. 超大型矿床的探寻与研究的若干问题[ J]. 地学前缘, 1994, 1(3): 45~ 52. doi: 10.3321/j.issn:1005-2321.1994.03.005
      [29]
      翟裕生, 张湖, 宋鸿林, 等. 大型构造与超大型矿床[M]. 北京: 地质出版社, 1997. 1~ 180.
      [30]
      何绍勋, 段嘉瑞, 刘继顺, 等. 韧性剪切带与成矿[ M]. 北京: 地质出版社, 1996. 1~ 186.
      [31]
      何绍勋. 有关剪切带及其成因的述评[A]. 见: 中国地质学科发展的回顾———孙云铸教授百年诞辰纪念论文集[C]. 武汉: 中国地质大学出版社, 1995. 104~ 109.
      [32]
      Cox S F, Etheridge M A, Cas R A F, et al. Deforma- tional style of the Castlemaine area, Bendigo Ballarat zone: implications for evolution of crustal structure in Central Victoria, Australia[ J]. Journal of Earth Sci- ences, 1991, 38(2): 151~ 170.
      [33]
      Cox S F. Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia[ J]. Journal of Geophysical Research B, 1995, 100(7): 13007~ 13020.
      [34]
      Nield D A. Onset of thermohaline convection in a porous medium[ J]. Wat Resources Res, 1986, (4): 553~ 560.
      [35]
      Rubin H. Effect of nonlinear stabilizing salinity profiles on thermal convection in a porous medium layer[ J]. Wat Resources Res, 1973, (9): 211~ 221.
      [36]
      Griffith R W. Layered double_diffusive convection in porous media[ J]. Jour Fluid Mech, 1981, 102: 221~ 248. doi: 10.1017/S0022112081002619
      [37]
      Murray B T, Chen C F. Double_diffusive convection in porous medium[J]. Jour Fluid Mech, 1989, 201, 147~ 166. doi: 10.1017/S002211208900087X
      [38]
      kieran D. fluid_rock interaction in crustal shear zone: a directed percolation approach[ j]. Geology, 1994, 22: 843~ 846.
      [39]
      张荣华. 地球化学从静态、平衡走向流动、非平衡的研究领域———当代地球科学进展[ M]. 武汉: 中国地质大学出版社, 1991. 166~ 172.
      [40]
      Norton D, Knight J. Transport phenomena in hydrother- mal systems: cooling pluton[ J]. Amer Jour Sci, 1977, 277: 937~ 987. doi: 10.2475/ajs.277.8.937
      [41]
      Norton D, Tayor Jr H P. Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrution[J]. Journal of Petrology, 1979, 20(3): 4211~ 4286.
      [42]
      Johnson J W, Norton D. Theoretical prediction of hy- drothermal conditions and chemical equilibrium during skarn formation in porphyry copper systems[ J]. Econ Geol, 1985, 80(7): 1797~ 1823. doi: 10.2113/gsecongeo.80.7.1797
      [43]
      Cathles L M. Fluid flow and genesis of hydrothermal ore deposits[J]. Econ Geol, 1981, 75: 424~ 457.
      [44]
      Cline J S, Bondnar R J, Rimstidt J D. Numerical simula- tion of fluid flow and silica transport and deposition in boiling hydrothermal solutions: application to epithermal gold deposits[ J]. J Geophys Res, 1992, 97: 9085~ 9103. doi: 10.1029/91JB03129
      [45]
      Cox S F, Wall V J, Etheridge M A, et al. Deformational and metamorphic processes in the formation mesothemal vein_hosted gold deposits — example from the Lachlan fold in Central Victoria[J]. Ore Geol Rev, 1991, 6: 391 ~ 423. doi: 10.1016/0169-1368(91)90038-9
      [46]
      Benning L G, Seward T M. Hydrosuphide complexing of gold(Ⅰ) in hydrothermal solution from 150 to 500 ℃ and 500 to 1 500 bars[ J]. Geochim Cosmochim. Acta, 1996, 60: 1849~ 1877. doi: 10.1016/0016-7037(96)00061-0
      [47]
      Bowers T S. The deposition of gold and other metals: pressure induced fluid immiscibility and associated stable isotope signatures[J]. Geochim Cosmochim Acta, 1991, 55: 2447~ 2434.
      [48]
      Matthai S K, Henely R W, Heinrich C A. Gold precipi- tation by fluid mixing in bedding_parallel fractures near Carbonaceous slates at the Cosmopolitan Howley gold de- posit, northern Australia[ J]. Econ Geol, 1995, 90: 2123~ 2142. doi: 10.2113/gsecongeo.90.8.2123
      [49]
      Bonnemaison M. "Filons de aurifere" an cas particulier de shear aurifere[J]. Chron Rech Min, 1986, 482: 55~ 66.
      [50]
      Bonnemaison M, Marcoux E. Les zones de cisaillement auriferes du socle hereynien francais[ J]. Chron Rech Min, 1987, 488: 29~ 42.
      [51]
      Sibson R H. Structure and mechanics of fault zone in rela- tion to fault_hosted mineralization[ M]. Glenside: The Australian Mineral Foundation, 1989. 1~ 66.
      [52]
      Sibson R H, Francois R K. High_angle reverse faults flu- id_pressure cycling, and mesothermal gold_quartz deposits [J]. Geology, 1988, 16: 551~ 555.
      [53]
      Sibson R H. Rustal stress, faulting and fluid flow[A]. In: Parnell J, ed. Geological society special publications [ C]. Bath, UK: The Geological Society Publication House, 1994. 69~ 84.
      [54]
      Robert F, Boullier A M, Firdaous K. Gold_quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. Journal of Geophysical Research B, 1995, 100(7): 12861~ 12879.
      [55]
      Cameron E M. Derivation of gold by oxidative metamor- phism of a deep ductile shear zone: Part 1. Conceptual model[ J]. Journal of Geochemical Exploration, 1989, 31: 135~ 147. doi: 10.1016/0375-6742(89)90003-4
      [56]
      Cameron E M, Hattori K. 太古代金矿化和氧化热液流体[J]. 杨剑光译. 地质地球化学, 1988, 9: 42~ 54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198809004.htm
      [57]
      Spencer J E, Weley J W. Possible controls of base and precious_metal mineralization associated with Tertiary de- tachment faults in the lower Colorado River trough, Ari- zona and California[ J]. Geology, 1986, 14(3): 195~ 198 doi: 10.1130/0091-7613(1986)14<195:PCOBAP>2.0.CO;2
      [58]
      Fyfe W S, Kerrich R. Fluids and thrusting[ J]. Chem Geol, 1989, 49: 353~ 362.
      [59]
      Kerrich R, Wyman D. Geodynamic setting of mesother- mal gold deposits: an association with accretionary tecton- ic regimes[J]. Geology, 1990, 18: 882~ 885.
      [60]
      Kerrich R, Feng R. Archean geodynamics and the Abitibi Pontiac collision: implications for advection of fluids at transpressive collisional boundaries and the origin of giant quartz vein systems[J]. Earth Sci Rev, 1992, 32: 33~ 60. doi: 10.1016/0012-8252(92)90011-H
      [61]
      Kerrich R, Cassidy K F. Temporal relationships of lode gold mineralization to accretion, magmatism, metamor- phism and deformation — Archean to present: a review [J]. Ore Geol Rev, 1994, 9: 263~ 310. doi: 10.1016/0169-1368(94)90001-9
      [62]
      Hodgson C J. The structure of shear_related vein_type gold deposit: a review[ J]. Ore Geol Rev, 1989, (4): 233~ 273.
      [63]
      翟裕生, 邓军, 杨立强, 等. 山东夏甸金矿及其外围隐伏矿体定位预测[J]. 地学前缘, 1999, 6(2): 230. doi: 10.3321/j.issn:1005-2321.1999.02.018
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)

      Article views (3686) PDF downloads(16) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return