• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 25 Issue 3
    May  2000
    Turn off MathJax
    Article Contents
    CHENG Qiuming, 2000. MULTIFRACTAL THEORY AND GEOCHEMICAL ELEMENT DISTRIBUTION PATTERN. Earth Science, 25(3): 311-318.
    Citation: CHENG Qiuming, 2000. MULTIFRACTAL THEORY AND GEOCHEMICAL ELEMENT DISTRIBUTION PATTERN. Earth Science, 25(3): 311-318.

    MULTIFRACTAL THEORY AND GEOCHEMICAL ELEMENT DISTRIBUTION PATTERN

    • Received Date: 1999-12-07
    • Publish Date: 2000-05-25
    • Multifractal model is used to measure the multifractal distribution by means of not only the conventional low-order moment statistics but also the high-order moment statistics. Therefore, this model can be used to measure the statistical properties of the anomalous values as well as the background geochemical values. The background geochemical values usually follow normal or lognormal distributions, but the anomalous values may follow fractal (Preato) distributions. This paper introduces some recent developments of multifractal modeling and their applications to geochemistry, in particular to the spatial distribution and concentration pattern of trace elements. The results show that the ordinary statistical methods are effective only for the understanding of local properties of the values surrounding the multifractal mean value. In order to characterize effectively the distribution and concentration pattern of the anomalous values, this paper proposes the high-order moment statistical method and multifractal method. Furthermore, two methods have been given in this paper for the analyses of geochemical elements and anomalous values: concentration-area (C—A) fractal method and high-order correlation coefficient. The former method is used for separating anomalies from their background values and the latter is for enhancing the correlation coefficient between anomalous values of multiple elements. A case study is used to illustrate the application of these methods to the detection of Au/Cu-associated alteration zones in the Mitchell-Sulphurests mineral district, northwest of B.C. Province, Canada.

       

    • loading
    • [1]
      Agterberg F P, Cheng Q, Wright D F. Fractal modeling of mineral deposits: applications of computers and operations research in the mineral industry[A]. In: Elbrond J, Tang X, eds. Proc 24th APCOM Symposium(Montreal) [C]. Can: Inst Mining, Metallurgy and Petroleum Eng, 1993. 43~53.
      [2]
      Cheng Q, Agterberg F P, Bonham-Carter G F. A spatial analysis method for geochemical anomaly separation[J]. Explor Geochem, 1996, 56: 183~195. doi: 10.1016/S0375-6742(96)00035-0
      [3]
      Cheng Q, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Geochem Explor, 1994, 51: 109~130. doi: 10.1016/0375-6742(94)90013-2
      [4]
      Cheng Q, Bonham-Carter G F, Hall G E M, et al. Statistical study of trace elements in the soluble organic and amorphous Fe-Mn phases of surficial sediments, Sudbury basin: 1. Multivariate and spatial analysis[J]. Explor Geochem, 1997, 59: 27~46. doi: 10.1016/S0375-6742(96)00046-5
      [5]
      Cheng Q. Multifractality and spatial statistics[J]. Computer & Geosciences, 1999b, 25(9): 949~962.
      [6]
      Cheng Q. Gliding box method and multifractal modelling [J]. Computer & Geosciences, 1999c, 25(9): 1073~1080.
      [7]
      Cheng Q. Multifractal modelling and spatial analysis[A]. In: Vera Pawlowsky Glahn, ed. Proceedings, IAMG' 97 meeting, Barcelona[C]. Barcelona: International Center for Numerical Methods in Engineering(CIMNE), 1997. 57~72.
      [8]
      Agterberg F P. Multifractal modelling of the sizes and grades of giant and supergiant deposits[J]. Int Geology Review, 1995, 37: 1~8. doi: 10.1080/00206819509465388
      [9]
      Agterberg F P. Fractals, multifractals, and change of support: geostatistics for the next century[M]. Dordrecht: Kluwer Academic Pub, 1994. 223~234.
      [10]
      Mandelbrot B B. The Fractal geometry of nature[M]. San Francisco: W HFreeman and Company, 1983. 468.
      [11]
      Bak P. How nature works[M]. New York: Springer-Verlag, 1996. 212.
      [12]
      Agterberg F P. How nature works: the science of self-organized criticality, book review[J]. Computer & Geosciences, 1998, 24: 205~207.
      [13]
      Korvin G. Fractal models in the earth sciences[M]. Amsterdam: Elsevier, 1992. 408.
      [14]
      Evertsz C J G, Mandelbrot B B. Multifractal measures [A]. In: Peitgen HO, Jurgens H, Saupe D, eds. Chaos and fractals[C]. New York: Springer-Verlag, 1992. 922~953.
      [15]
      Schertzer D, Lovejoy S. Nonlinear variability in geophysics[M]. Dordrecht: Kluwer Academic Publ, 1991. 318.
      [16]
      Feder J. Fractals[M]. New York: Plenum Press, 1988. 283.
      [17]
      Halsey T C, Jensen M H, Kadanoff L P, et al. Fractal measures and their singularities, the characterization of strange sets[J]. Phys Rev, 1986A, 33: 1141~1151. doi: 10.1103/PhysRevA.33.1141
      [18]
      Atmanspacher H, Scheingraber H, Wiedenmann G. Determination of f(a)for a limited random point set[J]. Phys Rev, 1989, 40: 3954~3963. doi: 10.1103/PhysRevA.40.3954
      [19]
      Chhabra A B, Sreenivasan K R. Negative dimensions: theory, computation and experiment[J]. Phys Review A, 1991, 43: 1114~1117. doi: 10.1103/PhysRevA.43.1114
      [20]
      Cheng Q. Gliding box method for multifractal analysis [A]. In: Vare Pawlowsky Glahn, ed. Proceedings of IAMG' 97 meeting Part Ⅱ[C]. Barcelona: CIMNE, 1997. 489~494.
      [21]
      Gupta V K, Waymire E C. A statistical analysis of mesoscale rainfall as a random cascade[J]. American Meteorological Society, 1993, 32: 251~267.
      [22]
      Cheng Q, Agterberg F P. Multifractal modeling and spatial point processes[J]. Math Geology, 1995, 27: 831~845. doi: 10.1007/BF02087098
      [23]
      Cheng Q, Agterberg F P. Multifractal modeling and spatial statistics[J]. Math Geology, 1996b, 28: 1~16. doi: 10.1007/BF02273520
      [24]
      Cheng Q. Stochastic simulation and discrete multifractals [A]. In: Buccianti A, Nardi G, Potenza R, eds. In: Proceedings of the Fourth Annual Conference of the International Association for Mathematical Geology [C]. Ischia: [s. n. ], 1998. 572~577.
      [25]
      Cheng Q. Discrete multifractals[J]. Math Geol, 1997a, 29(2): 245~266. doi: 10.1007/BF02769631
      [26]
      Cheng Q. Markov processes and discrete multifractals [J]. Math Geology, 1999a, 31(4): 455~469. doi: 10.1023/A:1007594709250
      [27]
      Cheng Q. The perimeter-area fractal model and its application in geology[J]. Math Geol, 1995, 27: 69~82. doi: 10.1007/BF02083568
      [28]
      Cheng Q. Spatial and scaling modelling for geochemical anomaly separation[J]. J Explor Geochemistry, 1999d, 65: 175~194. doi: 10.1016/S0375-6742(99)00028-X
      [29]
      Agterberg F P, Cheng Q, Brown A, et al. Multifractal modeling of fractures in Lac Dc Bonnet batholith, Manitoba[J]. Computers & Geosciences, 1996, 22: 497~507.
      [30]
      Cheng Q. Multifractal modelling and lacunarity analysis [J]. Math Geol, 1997b, 29: 919~932. doi: 10.1023/A:1022355723781
      [31]
      Sim B, Agterberg F P, Beaudry C, et al. Determining the cutoff between background and relative base contamination levels using multifractal methods[J]. Computer & Geosciences, 1999, 25(9): 1023~1042.
      [32]
      Ballantyne S B. Geochemistry of Sulphurets area, British Columbia[A]. In: Geological Survey of Canada, ed. Program with abstracts[C]. Ottawa: [s. n. ], 1990.
      [33]
      Ballantyne S B, Harris D C, Shives R B K, et al. An integrated approach and model for the discovery of blind Cu-Au porphyry systems[M]. Poster: Geological Survey of Canada, Minerals Colloquium, 1992. 11.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)

      Article views (4194) PDF downloads(52) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return