• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 25 Issue 6
    Jun.  2000
    Turn off MathJax
    Article Contents
    Jin Shuyan, Sun Tianze, Xu Shikun, Zhang Peichun, 2000. AN HIGH-TEMPERATURE AND HIGH-PRESSURE EXPERIMENTAL STUDY OF CHANGES BETWEEN BRITTLE AND DUCTILE DEFORMATIONS IN DIABASE. Earth Science, 25(6): 565-572.
    Citation: Jin Shuyan, Sun Tianze, Xu Shikun, Zhang Peichun, 2000. AN HIGH-TEMPERATURE AND HIGH-PRESSURE EXPERIMENTAL STUDY OF CHANGES BETWEEN BRITTLE AND DUCTILE DEFORMATIONS IN DIABASE. Earth Science, 25(6): 565-572.

    AN HIGH-TEMPERATURE AND HIGH-PRESSURE EXPERIMENTAL STUDY OF CHANGES BETWEEN BRITTLE AND DUCTILE DEFORMATIONS IN DIABASE

    • Received Date: 2000-04-11
    • Publish Date: 2000-11-25
    • A series of experiments on the transfer between the brittle and ductile properties of the Maryland diabase was performed, with natural pyrophyllite as the medium for the pressure transfer, at the temperature ranging from 800 to 1 000 ℃, at the confining pressure ranging from 0.6 GPa to 1.0 GPa, and at the strain rate ranging from 10-4 to 10-5 s-1. The experiment results show that the rock is deformed into typical brittle fractures at the strain rate ranging from 10-4 to 10-5 s-1, at the confining pressure of 1.0 GPa, and at the temperature lower than 800 ℃. At the temperature higher than 1 000 ℃, the rock is deformed dominantly into the metastable creep. At the temperature ranging from 800 to 950 ℃, the deformation of the rock turns from the brittle fractures to the pseudo ductile flow. Therefore, the sensitive effect of the temperature change on the rock transfer between brittle and ductile properties is greater than that of the pressure change. The micro structural observation shows that the transfer between the brittle and ductile properties in the diabase is dominated by the conjugated ductile flow network in the form of the rarefaction and diffusion.

       

    • loading
    • [1]
      Korneneberg A K K, Shelton G L. Deformation microstructure in experimentally deformed diabase[J]. J Struct Geo, 1980, 2: 341~353. doi: 10.1016/0191-8141(80)90022-X
      [2]
      Caristan Y. Transition from high temperature creep to fracture in Maryland diabase[J]. J Geophys Res, 1982, 87: 6781~6790. doi: 10.1029/JB087iB08p06781
      [3]
      Shelton G, Jullis J. Experimental flow laws for crustal rocks[J]. EOS Tran AGU, 1981, 62: 396.
      [4]
      Fredich J, Evans B. High temperature fracture and flow of Maryland diabase[J]. EOS Trans AGU, 1990, 71: 1657.
      [5]
      Shelton G. Experimental deformation of single and of polyphase crustal rocks at high temperature and pressure [D]. Brown University, Providences R I, 1968. 146.
      [6]
      Tullis T, Horowttz F G, Tullis J. Flow laws of polyphase aggregate from end-member flow[J]. J Geophys Res, 1991, 96: 8081~8096. doi: 10.1029/90JB02491
      [7]
      Mackwell S J, Zimmelman M E, Kohlstedt D L. Experimental deformation of dry Columbia diabase: implications for tectonics on Venus[A]. In: Daemen J K, Schuttz R A, eds. Rock mechanics[C]. Balkem Rotterdum: Brookfield, 1995. 207~214.
      [8]
      赵阿兴, 王子潮, 崇秀兰, 等. 地壳温压条件下济南辉长岩蠕变破坏的实验研究[A]. 见: 中国岩石力学与工程学会和高温高压岩石力学专业委员会, 编. 第一届高温高压岩石力学学术讨论会论文集[C]. 北京: 学术出版社, 1988. 67~74.
      [9]
      王绳祖. 岩石的脆性-延性转变及塑性流动网络[J]. 地球物理学进展, 1993, (8): 25~37. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199304003.htm
      [10]
      Rutter E H. On the nomenclature of mode of failure transition in rock[J]. Tectonophysics, 1986, 122: 381~387. doi: 10.1016/0040-1951(86)90153-8
      [11]
      Fredrich J T, Evans B. Microstructures of the brittle to plastic transition Carrara marble[J]. J Geophys Res, 1989, 94: 4129~4145. doi: 10.1029/JB094iB04p04129
      [12]
      Tullis J, Yund R A. Transition from catalastic flow to dislocation cheep of feldspar: mechanisms and microstructures[J]. Geology, 1987, 15: 606~609.
      [13]
      Shimamoto T. The origin of S-C mylonite and a new faulted-model[J]. J Struct Geol, 1989, 11: 51~64. doi: 10.1016/0191-8141(89)90035-7
      [14]
      王绳祖. 亚洲大陆岩石圈多层模型和塑性流动网络[J]. 地质学报, 1993, 67: 1~18. doi: 10.3321/j.issn:0001-5717.1993.01.001
      [15]
      肖晓晖, 王绳祖, 张流. 高温高压条件下灰岩变形网络的实验研究[J]. 地球物理学进展, 1993, (8): 61~69.
      [16]
      李建国, 宋瑞卿, 王绳祖. 若干固体材料脆性-延性转变及宏观结构的实验研究[J]. 地球物理学进展, 1993, (8): 70~80. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ199304009.htm
      [17]
      Handy M R. The solid state flow of polymineralic rocks [J]. J Geophys, Res, 1990, 95: 8647~8661. doi: 10.1029/JB095iB06p08647
      [18]
      Jordan P G. The deformation behavior of bimineralic limestone-halite aggregates[J]. Tectonophysics, 1987, 135: 185~197. doi: 10.1016/0040-1951(87)90160-0
      [19]
      Jordan P G. The rheology of polymineralic rocks—an approach[J]. Geol Rundsch, 1988, 77: 285~294. doi: 10.1007/BF01848690
      [20]
      Evans B. The brittle-ductile transition in rocks: recent experimental and theoretical progress[A]. In: Duba AG, ed. The brittle-ductile transition in rocks[C]. Washinton D C: American Geophysical Union, 1990. 1~18.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(1)

      Article views (4132) PDF downloads(11) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return