• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 25 Issue 6
    Jun.  2000
    Turn off MathJax
    Article Contents
    Ling Wenli, Zhang Hongfei, Gao Shan, Zhong Zengqiu, Han Yinwen, Xu Qidong, 2000. GEOCHEMICAL CONSTRAINTS ON THE PARTIAL MELTING OF DABIE SUBDUCTED BLOCKS DURING UHPM PROCESS. Earth Science, 25(6): 573-578.
    Citation: Ling Wenli, Zhang Hongfei, Gao Shan, Zhong Zengqiu, Han Yinwen, Xu Qidong, 2000. GEOCHEMICAL CONSTRAINTS ON THE PARTIAL MELTING OF DABIE SUBDUCTED BLOCKS DURING UHPM PROCESS. Earth Science, 25(6): 573-578.

    GEOCHEMICAL CONSTRAINTS ON THE PARTIAL MELTING OF DABIE SUBDUCTED BLOCKS DURING UHPM PROCESS

    • Received Date: 2000-05-09
    • Publish Date: 2000-11-25
    • This paper presents a comprehensive geochemical study of rocks from the cross section of Sidaohe quarry in Macheng, one of the representative outcrops of eclogite and its host rocks in Dabie UHPM belt. It is revealed in this paper that the eclogite shares the geochemical features with N MORB, and its felsic host rocks can be categorized as TTG gneiss and garnet bearing granite. Evidences from REE and w (Nb) / w (Ta) ratios, Sm Nd isotopes and U Pb zircon dating favor the scenario that TTG gneiss originated from the partial melting of eclogite during the process of subduction, therefore, a special allochthonous relationship in tectonics arises between TTG gneiss and eclogite, the origin of TTG gneiss, while the garnet bearing granite would have resulted from the partial melting of eclogite during its exhumation, but the V type REE pattern denotes that HREE enriched mineral (s) was crystallized when the granite was forming, and the garnet would have been the most favorable candidate of these minerals. Low w (Nb) / w (Ta) ratios of garnet bearing granite indicate that the melting occurred in some extent due to fluid metasomatism, a product of the retrograde metamorphism of UHPM rocks. Therefore, the garnet bearing granite and eclogite would have been in a sub in situ relationship, as the granite may have occurred in the depth where garnet was stable.

       

    • loading
    • [1]
      王清晨, 从柏林. 大别山超高压变质岩的地球动力学意义[J]. 中国科学(D辑), 1996, 26(3): 271~276. doi: 10.3321/j.issn:1006-9267.1996.03.007
      [2]
      李曙光. 大陆俯冲化学地球动力学[A]. 见: 郑永飞, 编. 化学地球动力学[C]. 北京: 科学出版社, 1999. 334~357.
      [3]
      从柏林, 王清晨. 大别山-苏鲁超高压变质带研究的最新进展[J]. 科学通报, 1999, 44(11): 1127~1141. doi: 10.3321/j.issn:0023-074X.1999.11.002
      [4]
      Cong B, Zhai M, Carswell D A, et al. Petrogenesis of the ultrahigh-pressure rocks and their country rocks at Shuanhe in Dabieshan, central China[J]. Eur J Mineral, 1995, 7: 119~138. doi: 10.1127/ejm/7/1/0119
      [5]
      Liu J G, Zhang R Y, Jahn B M. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanhe, Dabie Mountains, east-central China[J]. Lithos, 1997, 41: 59~78. doi: 10.1016/S0024-4937(97)82005-1
      [6]
      Zheng Y F, Fu B, Cong B L, et al. Extreme 18O depletion in eclogite from the Su-Lu terrane in east China[J]. Eur J Mineral, 1996, 8: 317~323. doi: 10.1127/ejm/8/2/0317
      [7]
      Baker J, Mattews A, Mattey D, et al. Fluid-rock interaction during ultra-high pressure metamorphism, Dabieshan, China[J]. Geochim Cosmochim Acta, 1997, 61: 1685~1696. doi: 10.1016/S0016-7037(97)00005-7
      [8]
      钟增球, 张宏飞, 索书田, 等. 大别超高压变质岩折返过程中的部分熔融作用[J]. 地球科学——中国地质大学学报, 1999, 24(3): 393~399. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199904014.htm
      [9]
      Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. Oxford: Blackwell, 1985. 312.
      [10]
      陈江峰, 江博明. 钕、锶、铅同位素示踪和中国大陆地壳演化[A]. 见: 郑永飞, 编. 化学地球动力学[C]. 北京: 科学出版社, 1999. 262~282.
      [11]
      Li S, Jagoutz E, Chen Y, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh-pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochim Cosmochim Acta, 2000, 64: 1077~1093. doi: 10.1016/S0016-7037(99)00319-1
      [12]
      Becker H, Jochum K P, Carlson R W. Trace element fraction during dehydration of eclogites from high pressure terranes and the implications for element flues in subduction zone[J]. Chem Geol, 2000, 1163: 66~99.
      [13]
      郑祥身, 金成伟, 翟明国, 等. 北大别灰色片麻岩的岩石化学特征及大地构造背景[J]. 岩石学报, 1999, 15(1): 350~358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903002.htm
      [14]
      谢智, 陈江峰, 周泰禧, 等. 大别造山带变质岩和花岗岩的钕同位素组成及其地质意义[J]. 岩石学报, 1996, 12 (3): 401~408. doi: 10.3321/j.issn:1000-0569.1996.03.005
      [15]
      马昌前, 杨坤光, 许长海, 等. 大别山中生代钾质岩浆作用与超高压变质地体的剥露机理[J]. 岩石学报, 1999, 15(1): 379~395. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903006.htm
      [16]
      吴维平, 徐树桐, 江来利, 等. 大别山东部超高压变质带北侧的花岗片麻岩及其构造背景[J]. 安徽地质, 1998, 8(1): 19~26. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ801.005.htm
      [17]
      Wallis S R, Ishiwatari A, Hirajima T, et al. Occurrence and field relationships of ultrahigh-pressure metagranitoid and coesite eclogite in Su-Lu terrane, eastern China[J]. J Geol Soc London, 1997, 154: 45~54. doi: 10.1144/gsjgs.154.1.0045
      [18]
      Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chem Geol, 1995, 120: 347~359. doi: 10.1016/0009-2541(94)00145-X
      [19]
      Stalder R, Foley S F, Brey G P, et al. Mineral-aqueous fluid partitioning of trace elements at 900-1 200℃ and 3.0-5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism[J]. Geochim Cosmochim Acta, 1998, 62: 1781~1801.
      [20]
      Kamber B S, Collerson K D. Role of 'hidden' deeply subducted slabs in mantle depletion[J]. Chem Geol, 2000, 166: 241~254. doi: 10.1016/S0009-2541(99)00218-1
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(3)

      Article views (3927) PDF downloads(9) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return