剪切蚀变与物质迁移及金的富集——以胶东矿集区为例

军1 方 云2 杨立强3 丁式江1 肖荣阁1 彭润民1 王建平1 XIS

(1. 中国地质大学地球科学与资源学院,北京 100083;2. 中国地质大学工程学院,武汉 430074;3. 中国科学院地质与地球 物理研究所,北京 100101)

> 摘要,运用定量计算和计算机模拟与传统地质学相结合的方法,研究胶东矿集区中剪切构造 变形和围岩蚀变与物质迁移及金矿富集的相互关系,结果表明,在剪切一蚀变作用过程中,各 种物质组分发生了不同程度的迁移,存在较大的流体/岩石比值,体积应变为增加型.成矿作 用发生的最主要原因是剪切挤压-拉张构造作用引起的成矿元素活化→运移→富集.成矿早 期,形成以包体金为主的贫矿石;成矿晚期,形成含裂隙金和多金属细脉的富矿石. 关键词,剪切一蚀变;物质迁移;成矿作用. **中图分类号**, P542; P618.51 文献标识码.A **文章编号**: 1000-2383(2000)04-0428-05 作者简介:邓军,男,1958年生,教授,博士生导师,矿床学和构造地质学专业,主要从事区域 构造、成矿流体及成矿动力学的教学和科研工作.

自 Ramsay 等^[1]系统介绍韧性剪切带研究成 果,尤其是 Bonnemaison^[2]提出"含金剪切带"型成 矿模式以来,对剪切带的研究迅速发展与深化,并取 得了大量成果,剪切带流体成矿系统^[3~5]概念主要 包括扩散作用、脱水作用、流体一岩石反应、构造变 形和晶格重组5种可能的作用过程,并强调了构造 变形与流体-岩石反应的不均一性对成矿界面上物 质迁移和能量交换及金矿富集的重要意义、本文以 胶东矿集区为例,运用 Gresens^[6]方程、Grant^[7]等比 线分析法、0[']hara^[8]微量元素法与传统地质学相结 合的方法,获取剪切构造变形与围岩蚀变相互关系 的信息,在此基础上,探讨金的富集成矿机制.

剪切构造变形与含矿围岩蚀变 1

在剪切带流体成矿系统中,成矿流体与变形岩 石间物质迁移和能量交换的反馈耦合,改变了原岩 的化学成分,导致系统结构的不均一性,岩石变形结 构构造的形成与物质成分的调整同步进行^[9],成矿 流体携带成矿组分沿孔隙或裂隙介质运移→聚集→

收稿日期: 2000-03-26

基金项目:国土资源部"百名跨世纪科技人才培养计划"基金 (No.9808);国家重点基础研究发展规划项目(No.G1999043206); 沉淀→成矿的过程中与围岩进行着复杂的相互作用 (耦合). 热液蚀变组合反映了开放体系下剪切带与 含矿围岩中达到流体、化学、物理(机械)、同位素、热 力学和动力学平衡的产物.

胶东矿集区岩浆活动、流体演化和成矿作用受 深断裂及剪切带构造系统控制明显.大型剪切带是 岩石圈内连续递进应变的构造形变带,它间歇性地 发生左、右行扭动并形成次级羽状裂隙,同时发生蚀 变、矿化作用.而与金矿化关系密切的同构造蚀变主 要为成矿作用早期的红化花岗岩蚀变和中晚期的绢 英岩化蚀变.一般来说,在早期剪压体制下,流体组 分、成岩组分和成矿组分大量交换运移;在晚期剪张 体制下,热液析出、交代作用和成矿作用发 生[10~14],产生绢英岩化蚀变,而在这一转换过程 中,形成红化花岗岩.

在早期挤压体制下,从地幔到地壳发生了强烈 的质量转移,形成花岗岩化带,而在上部层位开始产 生花岗片麻岩穹窿.与此同时,含金剪切带中幔源 CO2 流体沿变形构造带上升,使角闪岩进一步变质 脱水,形成麻粒岩;流体组分、成岩组分和成矿组分 的质量转移形成所谓"薄膜机制",产生具含矿碱性 流体蚀变面貌的同构造期交代岩,红化花岗岩蚀变 作用开始.这些交代岩的基础是一个具有高度组织 国家攀登计划项目(No.95-预-25和No.95-预-39). (C)1994-2021 China Academic Journal Electronic Pub结构性的输导转移流体系统,也是糜棱岩或剪切岩.net 绢英岩(3)

胶车隹家全矿仲变岩石平均化学成分

	Table 1	Mean cher	nical cor	nponents o	f altered r	ocks in .	Jiaojia go	ld deposi	t of Jiaoo	dong area		
岩 性	SiO_2	Al_2O_3	Fe_2O_3	FeO	MgO	CaO	Na ₂ O	K_2O	\mathbf{CO}_2	TiO_2	P_2O_5	MnO
片麻状花岗岩(2)	72.85	14.05	0.75	0.54	0.30	1.28	3.73	4.29	0.51	0.109	0.02	0.01
红化花岗岩(3)	71.80	14.92	0.34	0.54	0.20	1.42	4.12	4.63	0.96	0.133	0.04	0.03
<u>绢英岩(3)</u>	75.00	12.89	1.56	0.71	0.28	1.09	0.11	4.95	1.18	0.114	0.03	0.08
岩 性	Au	Ag	Cu	Pb	Zn	As	\mathbf{Sb}	Bi	Ni	Hg	Mo	Ba
片麻状花岗岩(2)	5.70	145.00	13.70	$1 \ 837.00$	62.80	3.60	0.42	0.18	1.30	3.90	0.52	2 147.00
红化花岗岩(3)	9.78	118.20	4.22	30.10	31.96	0.79	0.11	0.12	3.32	23.00	0.41	2 134.00
绢英岩(3)	417.14	4 286.60	87.98	953.81	1 376.00	5.36	1.51	2.87	5.08	21.40	0.47	760.20

夷 1

据原地质矿产部地球物理地球化学勘察研究所(1997)测试结果计算;()内为样品数;单位;氧化物为 10^{-2} , Au, Aq, Hq 为 10^{-9} ,其余为 10^{-6}

带交代变质系统,它在应力消失后仍继续存在并长 期起作用.

交代蚀变同期,深断裂切割加深,构造应力场从 韧性挤压变形体制向韧性剪切变形体制转换.深部 构造层次流体进入中深层次剪切带中,引起广泛的 退变质作用,使剪切带呈现为线型退变质带.此时最 易熔的酸性岩浆逐渐被基性岩浆取代,而后又被碱 性和超基性-碱性岩、碳酸盐岩、钾镁煌斑岩和金伯 利岩取代,并形成相应交代岩,红化花岗岩发育成 熟.在红化蚀变过程中,主要是碱金属元素的迁出, 以钾化、金红石化及绿泥石化为主·此时Fe2O3为迁 出组分,其主要化学反应如下:

 $\mathbf{NaAlSi_3O_8} + \mathbf{CaAl_2Si_2O_8} + 4\mathbf{SiO_2} + 3\mathbf{K}^+ = =$ 3KAlSi₃O₈+Ca²⁺+Na⁺;

 $2\mathbf{K}(\mathbf{Mq} \cdot \mathbf{Fe})_3 [AlSi_3O_{10}] (OH)_2 + 4\mathbf{H}^+ =$ Al(Mg •Fe)5[AlSi $3O_{10}$](OH)8+(Mg ·Fe)²⁺+ $2K^{+}+3SiO_{2};$

 $2N_{a}C_{a}AlS_{i_{3}}O_{8} + 5(M_{g}, F_{e})^{2+} + (F_{e}, Al)^{3+} +$ $10_{\rm H_2O} = (Mq, Fe)_5^{2+} (Fe, Al)^{3+} Si_3O_{10} (OH)_8 +$ $4S_{i}O_{2}+2Na^{+}+2Ca^{2+}+12H^{+};$

即斜长石钾化、斜长石及黑云母绿泥石化, 消耗掉 Fe³⁺,Fe²⁺,Mg²⁺离子,而增多K⁺,Na⁺,Ca⁺等离子.

交代蚀变后期,构造应力场从韧性变形体制向 脆性剪张变形体制转换,即转变为应力松弛阶段.岩 石破裂,产生构造扩容空间,形成含金石英脉,发育 广泛的绢英岩化与矿化.此时,大量 SiO₂, Fe₂O₃ 及 金属成矿元素迁入,其主要化学反应为:

4K (Mg, Fe)₅Al [AlSi₃O₁₀] (OH)₈ + 2K⁺ + 38H^{+} = $2 \text{KAl}_2 [\text{AlSi}_3 O_{10}] (OH)_2 + 20 (Mg, Fe)^{2+} +$ $Al_2O_3 + SiO_2 + 33H_2O;$

 $KAl_2[AlSi_3O_{10}](OH)_2+Ca^{2+}+Na^++SiO_2$.

晚期结束阶段,上地幔岩浆源(岩石圈和较深层 软流圈的流体系统补给)在剪张构造体制下形成更 晚一期的从辉绿岩到煌斑岩和沸绿岩的岩墙杂岩. 这时在较还原条件下,同构造交代岩中Si,Na,K,Al 带出,在上部较高层位形成富含金属硫化物的交代 岩(黄铁绢英岩),产生金一金属硫化物的局部富集 带,工业矿化大量形成.

2 物质迁移与质量平衡

剪切变形和热液蚀变不仅包括剪切带的变形条 件、特征及机制,还涉及其中的流体形式、流体成分、 流体流动或循环方式及流体通量等.它们相互作用, 造成元素的再分配,致使化学物质带入带出-Gresens^[6]最早提出成分一体积关系方程,定量描述剪 切蚀变岩石中组分迁移、体积变化和流体流量. $Grant^{[7]}$ 简化了这一方法,提出等比线分析法, O'hara^[8]又通过改进 Grant 等比线分析法,提出了 微量元素法·笔者即运用上述定量计算方法与传统 地质学相结合,获取剪切构造变形与围岩蚀变作用 过程中物质迁移与质量平衡的信息.

通常认为剪切一蚀变过程中 Al 为不活动元素 (表1),因此,在成分变异图上选择了恒定的 Al₂O₃ 线进行计算(图1),获得胶东焦家金矿剪切一蚀变 过程质量平衡方程:

100g片麻状花岗岩-5.36gSiO2-0.43gFe2O3-0.03 g FeO = 0.11 g MgO = 0.05 g CaO + $0.14 \text{ g Na}_{2}\text{O} + 0.06 \text{ g K}_{2}\text{O} + 0.02 \text{ g TiO}_{2} +$ 0.01 g MnO+0.02 g P2O5+94 g 红化花岗岩; (1)

$$0.01$$
 g 纪化花冈岩 -0.16 g CaO -3.99 g Na₂O -0.01 g P₂O₅ ===14.79 g SiO₂+1.46 g Fe₂O₃+

 $N_{aAlSi_3O_8} + C_{aAlSi_3O_8} + K^+ + 2H^+ = 1994-2021$ China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 1 胶东焦家金矿根据 Al₂O₃ 质量分数确定的等比线

Fig. 1 Grant 's isocon diagram based on the mass fraction of Al₂O₃ in Jiaojia gold deposit of Jiaodong area

a.片麻岩→红化花岗岩;b.红化花岗岩→绢英岩.w_b,w_b分别代表剪切蚀变前后岩石组分的质量分数

0.28 g FeO+0.12 g MgO+1.08 g K₂O+
0.07 g MnO+116 g 绢英岩; (2)
100 g 片麻状花岗岩-0.16 g CaO-3.62 g Na₂O0.01 g MgO = 3.85 g SiO₂+0.85 g Fe₂O₃+
0.19 g FeO+0.77 g K₂O+0.01 g TiO₂+
0.07 g MnO+109 g 绢英岩. (3)
(1) 式反映了早期红化蚀变过程中, CaO, Na₂O,

K₂O,TiO₂,MnO,P₂O₅为迁入组分,而SiO₂,Fe₂O₃, FeO,MgO则为迁出组分,微量元素除Au,Pb,Ni有 不同程度的迁入外,其他元素多为迁出组分.(²)式 说明由红化花岗岩进一步蚀变绢英岩时, SiO₂, Fe₂O₃, FeO, MgO, K₂O, MnO 及绝大部分金属 成矿元素迁入, 而 CaO, Na₂O 则迁出.(³) 式反映出 由片麻状花岗岩最终变成绢英岩的成分变化.

根据剪切一蚀变作用过程中成分带入、迁出量 占原岩中该成分的质量分数大小(图 2),可以确定 岩石成分由强到弱的变化序列:(1)片麻状花岗岩变 成红化花岗岩时,MnO→P2O5→Fe2O3→MgO→ TiO2→SiO2→FeO→CaO→Na2O→K2O·(2)红化花 岗岩变成绢英岩时,Fe2O3→MnO→Na2O→MgO→ FeO→P2O5→K2O→SiO2→CaO→TiO2·这种成分变 化序列与元素自身地球化学性质、造岩矿物晶体结 构以及 p = T环境条件关系密切,反映了剪切一蚀 变作用过程中元素的相对活动性顺序.

剪切一蚀变作用中流体成分的参与,导致岩石 化学成分发生迁出和带入,以及蚀变岩石体积变化. 对胶东夏甸金矿不同类型剪切一蚀变岩组分迁移、 体积变化和流体流量进行定量模拟计算结果表明: 剪切一蚀变作用过程中,(1)各种物质组分发生了不 同程度的迁移,Fe2O3,FeO,MgO,CaO,CO2,TiO2 为 迁入组分,而SiO2,Al2O3,Na2O,K2O则为迁出组 分,微量元素Sb,Cu,Sr有不同程度的带出,而其他 元素Au,Ag,As,Pb,Zn,Cr多为带入组分;(2)体积 应变为增加型,表明在此作用过程中发生了明显 的扩容变化,矿体定位于剪切带的扩容带中;(3)存

图 2 胶东焦家金矿剪切一蚀变过程中相对于原岩含量的组分迁移柱状图

(CFig.24-Quantity of component migration during the process of shear-alteration in Jiaodong area of Shandong Province onki net

表 2 胶东夏甸金矿剪切一蚀变作用过程中相对于原岩组分迁移量、体积变异和流体流量

Table 2 Component transfer, volume variation and fluid flux during the process of shear-alteration in Jiaodong area of Shandong Province

н м											体积变	次体/山ナル体
石性	SiO_2	Al_2O_3	Fe_2O_3	FeO	MgO	CaO	Na_2O	K_2O	TiO_2	\mathbf{CO}_2	化率/%	沉忰/石石���
硅化糜棱岩化片麻岩	-2.00	-0.36	0.27	0.11	0.15	0.01	-0.24	-0.11	0.02	0.43	-13	$133.6 \sim 668.0$
硅化糜棱岩化角砾岩	-9.07	-0.42	0.42	0.13	0.24	0.24	-0.38	-0.05	0.02	0.73	+5	60.5~302.4
碳酸盐化黄铁矿化矿石	-4.04	-1.05	1.60	0.62	0.68	1.10	-0.41	-0.25	0.00	1.98	12	266.9~1 334.7
绢英岩化角砾岩	-1.18	-0.09	0.24	0.17	0.19	0.12	-0.39	0.07-	-0.01	0.47	-2	$78.5 \sim 392.7$
黄铁绢英岩化变粒岩	-3.10	-0.51	0.23	0.18	0.13	0.10	-0.30	-0.12	0.02	0.40	-29	206.4~1 032.0
碳酸盐化黄铁矿化角砾岩	-1.86	-0.48	0.38	0.64	0.38	0.67	-0.30	-0.15	0.03	1.35	+13	$123.7 \sim 618.3$

一表示质量迁出或体积损失,+表示质量带入或体积增加;流体/岩石比值取 SiO2 饱和度为 50%~90%计算.

在较大的流体与岩石比值,表明有大量体系外成矿 流体的加入,矿体定位于流体流量最大部位(表2). 其结论与焦家金矿计算结果一致.

3 金的富集成矿机制

成矿系统中,构造作用与流体作用同步进行、相 辅相承,成矿流体的活动与控矿构造的形成、演化过 程紧密相关,构造一流体时一空演化轨迹实质上就 是矿质活化→迁移→聚集→定位的过程,即构造-流体耦合成矿作用.流体输运和水一岩反应是成矿 系统聚矿功能得以实现的两个关键,而成矿流体的 运移则是其复杂动力学过程中最为重要的环节.

剪切带中流体渗透和流动不仅引起流体一岩石 相互作用,使原岩成分、流体成分和物理化学性状变 异,并促成物质沉淀而利于成矿;而过量流体压力引 发水压裂隙,也有利于成矿.韧性→韧一脆性→脆性 三阶段构造形变过程中,成矿元素逐步富集.早期韧 性形变阶段,成矿元素活化调整;韧一脆性和脆性阶 段,成矿元素重新调整,富集程度最大.

红化蚀变过程金仅有约0.7倍的富集,为金的 预富集阶段,而绢英岩化阶段,金在剪切带内大量富 集,为原来的50倍左右,因而要形成大规模的金矿 化,要有绢英岩化阶段的叠加,其叠加强度与金成矿 强度成正比.

红化阶段,NE 向成矿带处于相对挤压状态,仅 有少量的金属成矿元素富集[15].成矿流体中金沉淀 析出主要通过以下反应进行:

 $[\operatorname{Au}(\operatorname{HS})_2]^- + \operatorname{Fe}^{2+} \longrightarrow \operatorname{Au} + \operatorname{Fe}S_2 + 2\operatorname{H}^+.$ (4)此时(成矿作用早期),体系中 Fe^{2+} 充分,有利于反 $\bar{\mathcal{D}}(4)$ 向右进行,体系中 SiO₂ 和 FeS₂ 大量晶出,金 以细粒包裹体形式夹杂于黄铁矿中,形成以包体金ublishGeologyouse. All 1976~1982.

为主的贫矿石,而残余溶液中富集了 Au, Ag 等多金 属元素.

绢英岩化阶段(成矿年龄主要为130~100 Ma),成矿系统体积应变为增加型,有大量体系外物 质加入,矿体定位于剪切带的扩容带中.先成块状黄 铁矿矿石碎裂,富Au,Ag热液贯入,形成含裂隙金 和多金属细脉的富矿石.成矿流体中金沉淀析出主 要通过以下反应进行:

 $[Au(HS)_2]^- + 1/2 H_2O = Au + 1/4 O_2 +$ $2HS^{-}+H^{+}$. (5)

可见,胶东金矿集中区的形成是经韧性剪切→ 区域变质→岩浆重熔等构造热动力作用逐步富集的 多期次、多来源的复杂过程,导致矿化发生的最主要 原因是剪切挤压一拉张构造作用引起的成矿元素活 化、运移与富集作用.

研究工作自始至终得到翟裕生院士的指导与帮 助,谨此致谢.

参考文献:

- [1] Ramsay J G, Graham R H. Strain variation in shear belt [J]. Can J Earth Sci, 1970, 7: 789~801.
- [2] Bonnemaison M. "Filons de aurifere" an cas particulier de shear aurifere [J]. Chron Rech Min, 1986, 482: 55~66.
- [3] 邓军,翟裕生,杨立强,等.论剪切带构造成矿系统[J]. 现代地质,1998,12(4):493~500.
- [4] 邓军,杨立强,孙忠实,等.剪切带构造成矿动力机制与 模式[J].现代地质,1999,13(1):1~7.
- [5] 邓军, 翟裕生, 杨立强, 等. 剪切带构造一流体一成矿系 统动力学模拟[J]. 地学前缘, 1999, 6(1): 115~129.
- [6] Gresens R L. Composition-volume relationships of metasomatism [J]. Chemical Geology, 1967, (2): 47~65.
- [7] James A Grant · The isocon diagram a simple solution to greses equation for metasomatic alteration [J]. Economic

http://www.cnki.net

- [8] O'hara. Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthurst setting. North Carolina, USA [J]. Tectonophysics, 1988, 156: 21~36.
- [9] Dong F X, Li Z J, Chen B L, et al. A study on high-temperature and high-pressure experiment of correlativity between deformational system of Au-bearing rocks element adjustments [J]. Acta Geologica Sinica, 1999, 73(1): 40 ~46.
- [10] Детников Ф А. Кпроблеме вертикальной зональности и рудоносности глубинных разломов докембрия [J]. Геология рудных месторождений, 1991, (2): 15~24.
- [11] Cameron E M, Hattori K. Archean gold mineralization and oxidized hydrothermal fluids [J]. Ecology Geology,

1987, 82(5), 1177~1191.

- [12] Cameron E M. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: part 1. conceptual model [J]. Journal of Geochemical Exploration, 1989, 31: 135~147.
- [13] Newton R C. Fluids and shear zones in the deep crust
 [J]. Tectophysics, 1990, 182: 21~27.
- [14] Nesbitt B E, Murowchick J R, Muhlenbachs K. Dual origins of lode-gold deposits in the Canadian Cardillera [J]. Geology, 1986, 14: 501~509.
- [15] 邓军, 翟裕生, 杨立强, 等, 构造演化与成矿系统动力学[J]. 地学前缘, 1999, 6(2): 315~323.

SHEAR ALTERATION, MASS TRANSFER AND GOLD MINERALIZATION: AN EXAMPLE FROM JIAODONG GOLD-DEPOSIT CONCENTRATION REGION, SHANDONG, CHINA

Deng Jun¹ Fang Yun² Yang Liqiang³ Ding Shijiang¹ Xiao Rongge¹ Peng Runmin¹ Wang Jianping¹ (1. Faculty of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China; 2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100101, China)

Abstract: In a metallogenic system, tectonism and fluid process occurred at the same time and therefore, they are coupled with each other. The action of ore-forming fluids is bound up with formation and evolution of ore-controlling structures. Structural-fluid temporal-spatial evolution track is, in essence, the mobilization, migration, aggregation and location process of ore-forming materials, i.e. the coupled process of structuralfluid mineralization. In this paper, the geological analysis for the gold-deposit concentration region of Jiaodong, Shandong Province, China, is conducted with the Gresens' equation, Grant's isocon diagram and O 'hara microelement calculation method, to reveal the interactions among the shear tectonic deformation, the wall-rock alteration, mass transfer and gold mineralization. The research results show that the shear deformation and hydrothermal alteration not only include the deformational condition, feature and mechanism of the shear zone, but also are related to the formation, component, flow or circulation model and flux of the fluids in the zone, resulting in the reallocation of elements and the migration of the chemical materials. During the shear-alteration process in the Jiaodong gold concentration area, all kinds of components were transferred in different amounts, the fluid-rock ratio was relatively high and the volume strain was of dilation type. The major reason for this mineralization is the mobilization, migration and enrichment of ore-forming elements induced by the shear compressive-extensional tectonism. The low-grade ores dominated by the inclusion gold were formed in the early ore forming stage, while the high-grade ores containing fissure gold and polymetallic veinlets were formed in the late ore-forming stage.

Key words: shear-alteration; mass transfer; ore-forming process.