新型锥体连接复合钎头暨 G308, YJ2.1R 凿岩合金

童志伟,张汉斌,张国榉

(中国地质大学掘进工程研究所, 湖北武汉 430074)

摘要:对传统刃片状和球齿钎头实现了扬长避短的"飞龙" ϕ 40、 ϕ 42—4P1C 锥体连接复合钎头,配合使用强度和耐磨性均佳的新型 G308、YJ2.1R 凿岩硬质合金,其使用寿命为我国目前广泛流行的锒 YG11C 合金片的 ϕ 40、 ϕ 42—字形钎头的 3 倍以上,是具有显著高效、低耗特点的换代产品.

关键词: 锥体连接复合钎头; G^{308} 合金; YJ^{2} · ^{1}R 合金;使用寿命;合金有效利用率.

中图分类号: P634.5

文献标识码: A

文章编号: 1000-2383(2002)04-0459-05

作者简介: 童志伟(1964-),女,副教授,主要从事凿岩机具和岩土工程教学及科研工作.

我国从20世纪50年代中期开始,硬质合金钎 头逐步地取代了沿袭 2 000 多年的钢钎凿岩, 使采 掘工业获得了迅猛发展. 直到 20 世纪 70 年代末,早 期普遍使用的凿岩硬质合金牌号大多为高钴的 YG15,YG11C.随着现代凿岩技术和凿岩设备的发 展,这些牌号合金因耐磨性差、使用寿命短而不敷需 要. 进入 20 世纪 70 年代中期尤其是改革开放以来, 中南大学、株洲硬质合金厂、自贡硬质合金厂等单位 先后研发了 YJ1, YK25, YK20, YG9C, YJ2, YK05 等低钴粗晶粒和非均匀硬质相的新牌号凿岩合金, 其钴含量在6%~10%之间.由于粉冶工艺和硬质 合金凿岩钎具技术的不断创新,这些新牌号硬质合 金片齿兼有高钴合金的高韧性和低钴合金的高耐磨 性,把我国凿岩合金和凿岩钎具的质量、品种提高到 了一个崭新的水平,近几年来,面对世界经济全球化 的挑战和我国加入 WTO 日程的逼近, 我国硬质合 金凿岩钎具界的广大同仁更是通力合作,在"加压烧 结"、"梯度合金"、"SBP 成型剂"、"一步法"制粉 (Co, Ni, Fe)、N系列合金、纳米合金、真空热处理和 G308, YJ2.1R 合金等新工艺、新材料和新型高性能 凿岩合金及新型凿岩钎具的研究方面,不断涌现出 了一大批追踪本行业技术前沿的创新成果. 本文将 提供已批量进入市场, 且具有广阔国内外市场前景 的锥体连接复合钎头和 G308, YJ2.1R 新型凿岩合

金的最新进展情况.

1 硬质合金钎头的发展历程及复合钎 头特点

1923年,德国人施律泰尔^[1]发明了WC-Co 硬质合金.从 1938年首批一字形钎头在德国问世以来^[2],硬质合金钎头已经历了刃片状钎头、球齿钎头和复合钎头等3个发展阶段.这3大系列钎头适应生产的不断发展,在许多方面实现了优势互补^[3].

传统刃片状系列钎头的外貌见图 1. 其硬质合金钎刃呈放射状分布,刃锋尖锐,钎刃工作时承受压应力,钎刃外侧与眼孔壁岩石直接接触,钎刃与钎头钢体焊接成为整体,钎刃磨钝后可多次重复修磨使

图 1 "飞龙" \$32 - \$89 刃片状系列钎头(一字、三刃、十字、 X 形)

Fig. 1 "Flying dragon" chisel bits, 3-point bits, cross bits, X-bits (ϕ 32 $-\phi$ 89)

收稿日期: 2001-12-15

图 2 "飞龙" ϕ 36 $-\phi$ 127 球齿系列钎头 Fig·2 "Flying dragon" button bits (ϕ 36 $-\phi$ 127)

用,其优点是:(1)整体坚固性好,可钻凿任何种类的岩石;(2)缩径慢,全磨次寿命长(约为同直径球齿钎头寿命的1.5 倍);(3)合金利用率较高(可达60% 左右),合金片残留刃高可降至8 mm 以下,且可方便地回收利用.缺点是:(1)最大直径受限(一字、三刃形 \lesssim 45 mm;十字形 \lesssim 64 mm;X 形 \lesssim 89 mm);(2) 钎刃受力与磨损不均,磨次寿命较低(约为球齿钎头不磨寿命的 $1/4\sim$ 1/8),修磨频繁,重磨费用较高.

1970 年前后,伴随液压凿岩机钻车凿岩而兴起的球齿系列钎头(图 2). 球齿钎头带半球形或弹头形齿冠的硬质合金柱齿,一般采用"过盈固齿"或"沉底式感应钎焊固齿"的方法,均衡地固结在钎头钢体端部. 优点是: (1) 齿冠钝化缓慢,通常作一次性使用,不需要中途更换和修磨钎头,有利于加快工程进度和减轻工人体力劳动; (2) 钎头最大直径不受限制,可方便地生产直径大于 ϕ 89 的钎头. 缺点是: (1) 不适用于单轴抗压强度 σ 0> 350 MPa 的极坚韧矿岩; (2) 带有 15° \sim 45° 外倾角的边齿承受弯曲应力,容易发生边齿碎脱; (3) 钎头边齿外侧钢体直接接触眼孔壁岩石,抗径向磨损能力差; (4) 使用寿命较短,一般约为片状钎头的 2/3,为复合钎头的 1/2 \sim 1/3; (5) 硬质合金严重浪费,有效利用率仅为 10% \sim 15%.

1996年底以来,中国地质大学发明的复合片齿系列钎头(中国专利号:ZL96203054.6)(图 3).复合钎头保存并发扬了刃片状和球齿系列钎头的优点,

图 3 "飞龙" \$ 36 - \$ 127 复合系列钎头

Fig. 3 "Flying dragon" insert and button complex-type bits $(\phi 36 - \phi 127)$

同时又巧妙地避开了它们各自的缺点.特点是:(1)整体坚固性好,边刃与中齿均承受压应力,刃锋尖锐,可钻凿任何种类岩石;(2)众多边刃外侧直接接触眼孔壁岩石,抗径向磨损能力强,几何形状稳定;(3)边刃和中齿受力与磨损均匀,钝化周期(即磨次寿命)较长(可达球齿钎头寿命的 1/3~1/2);(4)钎头直径不受限制;(5)边刃可用小规格砂轮修复,且合金磨削量小,故重磨费用较低;(6)使用寿命长,约为同直径刃片状或球齿钎头寿命的 2~3 倍以上;(7)合金有效利用率高(可达 60%左右),且残留刃齿可方便地回收,这有力地促进了我国钨钴战略资源的合理开发与利用.

2 新型 G308, YJ2.1R 凿岩硬质合金

表 1 YJ 系列合金物理机械性能

Table¹ Physical and mechanical property of YJ cemented carbide for rock drilling tools

合金牌号	YJ 0	ү у ј 1	YJ 2	YJ 3	
w (Co)/%	11.0~11.5	9.0~9.5	8.0~8.5	7.0~7.5	
$d_{ m WC}/\mu_{ m m}$	2.0~2.4	$2.4 \sim 2.8$	2.8~3.2	3.2~4.0	
τ/MPa	≥2 300 特级 2 700	≥2 200 特级 2 600	≥2 100 特级 2 500	≥2 000 特级 2 400	
$\eta/(\mathrm{MPa} \cdot \mathrm{m}^{1/2})$	17.1	16.7	16.1	15.9	
HRA 硬度	≥86.6 特级 87.1	≥87.0 特级 87.5	≥87.5 特级 87.7	≥88.0 特级 88.2	
$\rho/(g \cdot cm^{-3})$	$14.2 \sim 14.7$	$14.4 \sim 14.9$	$14.5 \sim 15.0$	$14.7 \sim 15.0$	
$\varphi_{\mathbf{B}}/\%$	≤0.1	≪0.1	≪0.1	≪0.1	
石墨夹杂/%	≤0.1	≪0.1	≪0.1	≪0.1	
断口组织 缺陷/mm	€0.05	€0.05	€0.05	≪0.05	

w (Co)· 钴含量; d_{WC} · WC 平均晶粒度; τ · 抗弯强度; η . 断裂韧性(KIC); ρ · 密度; φ_B · 体积孔隙率.

(C)1994-2021 China Academic Journal Electronic Publishing House: All 的高纯度 WC 粉 (3)通过改进球 .ne

表 2 G308, YJ2.1R 合金的物理机械性能

Table² Physical and mechanical properties of G³⁰⁸ and YJ². 1R cemented carbide for rock drilling tools

合金牌号	YG 308	ү J 2.1R	YJ 2.1	
w (Co)/%	8.0~8.5	8.0~8.5	8.0~8.5	
$d_{ m WC}/\mu_{ m m}$	1.8~2.2	2.0~2.4	2.0~2.4	
τ/MPa	2 801	2 984	2 668	
硬度	89.2	88.6	88.3	
$\rho/(g \cdot \text{cm}^{-3})$	14.74	14.74	14.74	
矫顽磁力(kA/m)	8.72	7.54	7.87	

参数符号同表 1.

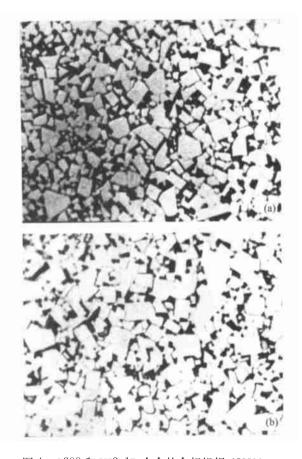


图 4 G308 和 YJ2.1R 合金的金相组织(1500×)

Fig. 4 Metallograph of G308 and YJ2. 1R cemented carbide for rock drilling tools

a. G³⁰⁸, WC 平均晶粒度 2.01 μm; b. YJ².1R, WC 平均晶粒度 2. $28 \mu_{\mathbf{m}}$

磨和烧结工艺制度,严格控制G308合金WC晶粒 度为 1.8~2.2 μm, YJ2.1R 合金 WC 晶粒度为 2.0 $\sim 2.4 \, \mu_{\rm m}$,且组织结构均匀致密.(4)通过改造排胶 设备和调整排胶制度防止了渗脱碳,使每炉合金的 碳含量趋于一致.(5)采用先进的"真空一气淬"工 艺, 使 G308, YJ2. 1R 与未经处理的 YJ2. 1R 合金相 比抗弯强度值提高了 10%~15%,洛氏硬度值提高 publishing House. All rights reserved. http://www.cnki.net

约 0.1~0.3 度.

G308, YJ2.1R 合金的成份、组织结构和主要物 理机械性能, 见表 2 和图 4.

根据物理机械性能检测和金相分析, G308, YJ2.1R 合金耐磨性与强度均较同类 YJ2 合金有较 大幅度提高,原因是:(1)在Co含量相同的条件下, 降低 WC 平均晶粒度有利于减少 WC 晶粒之间的 邻接度. 同时, 较均匀细小的 WC 晶粒因不含粗大 WC 并易确保粘结相 Co 在 WC 晶粒间的均匀分布, 可有效防止 Co 池的出现,减少合金中显微孔隙的 产生——这都促使合金的硬度与耐磨性得到提高. (2)"真空一气淬"热处理工艺对合金发挥了强韧化 作用,使其强度与硬度均有所提高.其强韧化机理 是:①利用硬质合金粘结相 Co 的同素异形体(面心 立方[fcc]结构的高温相 α —Co 有 4 个滑移面, 12 个 滑移系{111}×<110>;而密排立方(hcp)结构低温 相 ϵ -Co 只有 1 个滑移面, 3 个滑移系 $\{0001\}$ × <1120>)发生多形性转变这一特点,通过"真空一 气淬"方法,使韧性较大的高温相 α -Co 有更多保 留,从而提高合金的韧性和抗弯强度;②通过 α -Co相在高温下固溶 W 和 C 所形成的中间相粒子, 快速 冷却时来不及析出造成点阵畸变,可发生弥散强化 作用,使合金的硬度提高;③硬质合金气淬后再经一 定温度回火,淬火的过饱和空位会移到晶界、位错等 处消失,可使合金的点阵畸变减少,高应力区得到松 驰. 微观应力的减小, 也有助于抗弯强度的提高.

\$\\\\\\$42\$\$-4P1C 复合钎头与G308,YJ2. 1R 合金的使用效果

为了综合考核 G308, YJ2. 1R 两种合金和"飞 龙"^{\$42-4}P1C(楔形中齿)复合钎头对各种凿岩条 件的适应性, 笔者选择了在极坚硬强磨蚀性石英岩 露天采石场干式凿岩的苛刻条件,并与我国目前仍 广泛使用的 \$40 一字形钎头一起,进行了精确的工 况对比试验. 试钻结果详见表 3 和图 5.

(1)时间: 2001年7月20日—10月25日; (2)地点:湖北纸坊八分山石英岩露天采石场;(3)岩石 性质:石英岩,坚硬致密块状,SiO2含量经湖北省地 矿厅检测为98%,具强磨蚀性,普氏坚固性系数 f=16~18.(4) 凿岩条件: 天水 YT-24 型支腿式凿岩 机,冲击功 \geq 6 kg·m,冲击频率 \geq 1 800 次/min,工

表 3 "飞龙" ϕ 40 一字形钎头(YG11C)和 ϕ 42-4P1C(YJ2.1R,G308 边刃)复合钎头的使用效果

Table ³ Working circumstances of "Flying dragon" $\phi 40$ (YG11C) chisel bits and $\phi 42-4$ P1C (YJ2.1R, G308) insert and button complex-type bits

钎头类型	合金牌号	平均寿命(总进 尺 m/磨次数)	平均磨次进 尺/ (m/次)	终径/mm	残留 刃高/mm	单位进尺径 耗/(mm·m ⁻¹)	平均磨次刃 耗/(mm/次)	报废形式
	YG ¹¹ C (40×9×14)	4.96 m/4 次	1.24	36.9	中 8.9 边 5.5	0.69	2.1	直径、刃高 正常报废
φ42−4 P 1 C 复合形(φ42.3)	$YJ1.2R$ $(13 \times 9 \times 14)$	17.85 m/10 次	1.79	38.6	7.2	0.21	0.71	工作正常, 可续用
∮42−4 P 1 C 复合形(∮42.4)	YG ³⁰⁸ (13×9×14)	23.48 m/7.3 次	3.22	39.1	10.4	0.14	0.53	工作正常, 可续用

图 5 "飞龙" \$40 一字形钎头(YG11C)和 \$42-4P1C(YJ2.1R,YG308 边刃)复合钎头工况比较

Fig. 5 Working circumstances of "Flying dragon" $\phi 40$ (YG11C) chisel bits and $\phi 42-4$ P1C (YJ2.1R, RG308) insert and button complex-type bits

作风压 $5\sim 6 \text{ kg/cm}^2$; 贵阳 $\text{H}^{22}-\text{ZK}^{55}\text{SiMnMo}$ 锥体连接钎杆,长 $1\ 200 \text{ mm}$, $2\ 200 \text{ mm}$, $3\ 000 \text{ mm}$, $4\ 000 \text{ mm}$; 干式凿岩; DY-I 型卸钎器卸钎; $0.\ 75 \text{ kW}$ 上海金星 MQ^{3225} 型台式小型砂轮机,用 $\phi^{250}-\phi^{25}\times 32 \text{ mm}$ ϕ^{250} 目绿色碳化硅砂轮(平砂轮或带 ϕ^{250} 129°锥角的成型砂轮)干式修磨.

4 结论

短,钻速慢,更换钎头频繁,砂轮消耗量大,硬质合金有效利用率很低.在瑞典、加拿大等工业发达国家,以及 Atlas Copco, Sandvik, Secoroc, Boart Europe, Kometa 等跨国钎具公司的产品目录中,一字形钎头早已被十字、球齿钎头所取代.在我国,伴随加入WTO的进程和市场竞争的加剧,生产必然会由粗放型向集约型发展,一字形钎头也会逐步被三刃、十字、球齿和复合系列钎头所取代.(2)在坚硬的磨蚀性岩石中,锒有YJ2.1R,G308硬质合金边刃和楔形中齿的"飞龙"单42—4P1C(楔)锥体连接复合钎头,其使用寿命可达一般锒有YG11C合金片的单40、442—字形钎头寿命的3倍以上,且其磨次进尺(重磨周期)为一字形钎头的2~3倍,而其内销价格仅

为一字形钎头的 1.3 倍左右.因此,锥体连接复合钎头具有良好的推广前景,是我国锥体连接钎头目前最为优秀的换代产品之一·(3) 凿岩硬质合金"真空一气淬"工艺,可以在不降低甚至同时提高(通过更多保留高温 α —Co 韧性相)合金韧性(抗弯强度)的同时,较大幅度地提高(通过降低 WC 平均晶粒度和 WC 粒子在粘结相中的弥散强化作用)合金的耐磨性(硬度).以 YJ2.1R 合金为例,它比未经处理的YJ2 合金抗弯强度提高了约 15%,HRA 硬度值提高了 0.5°以上·(4) G308 合金具有足够的韧性和最佳的耐磨性,可用于各种坚硬的强磨蚀性脆性岩石; YJ2.1R 合金具有足够的耐磨性和最好的韧性,适用于各种坚韧的岩石.

参考文献:

[1] Schröter K. WC-CO 硬质合金[P]. 德国专利: 420698,

1923.

- Schröter K· WC Co sintered carbide [P]· Germany Patent: 420698, 1923.
- [2] 吉田邦彦·硬质合金工具[M]·张超凡,译·北京:冶金工业出版社,1981.254-255.
 - Jitianbangyan· Cemented carbide tools [M]· Translated by ZHANG C F· Beijing: Metallurgical Industry Publishing House, 1981.
- [3] 张国榉,张汉斌,硬质合金复合片齿钎具[M],武汉,中国地质大学出版社,1997.
 - ZHANG G J, ZHANG H B. Insert and button complextype rock drilling tools [M]. Wuhan: China University of Geosciences Press, 1997.
- [4] Q/OHPB001-91.YJ 系列矿山凿岩硬质合金企业标准 [S], 1991.
 - Q/OHPB⁰⁰¹ ⁹¹. Standard of YJ cemented carbide inserts for mining rock bits [S], ¹⁹⁹¹.

New Insert and Button Complex-Type Tapered Bits and G³⁰⁸, YJ²·1R Cemented Carbide for Rock Drilling Tools

TONG Zhi-wei, ZHANG Han-bin, ZHANG Guo-ju

(Institute of Excavating Engineering, China University of Geosciences, Wuhan 430074, China)

Abstract: "Flying dragon" $\phi 40$ and $\phi 42-4P1C$ insert and button complex type bits have developed the strong points and avoided the weak points of traditional ones bits. When they are used with new G^{308} , YJ^2 . 1R cemented carbide for rock drilling tools with extreme toughness, their service life is three times as much as that of the chisel bits set $YG^{11}C$ insert now used widely in China. At the same time, they maintain remarkable characteristics of high drilling speed and low consumption and will be likely to replace other bits.

Key words: insert and button complex-type tapered bits; G³⁰⁸ cemented carbide inserts; YJ²· ¹R cemented carbide inserts; service life of bits; utilization ratio of insert and button.