中太平洋多金属结壳的地球化学特征

张海生^{1,2},赵鹏大¹,胡光道¹

中国地质大学数学地质遥感地质研究所,湖北武汉 430074
 国家海洋局第二海洋研究所,浙江杭州 310012

摘要:采用 XRF 和 ICP-AES 法对中太平洋 CA 等 6 座海山的 40 多个站位的多金属结壳中化学元素进行测试与分析,并结 合其他资料对调查区结壳主要成矿元素的含量组成、特征变化、元素间的相关关系以及结壳与水深、地形等重要环境因子 进行探讨.研究表明太平洋海山结壳中元素丰度特征具有多种变化类型,中太平洋结壳主成分和成矿元素丰度明显高于马 绍尔群岛,而与西北太平洋、麦哲伦海山相近;中太平洋结壳化学元素相关关系分析表明:Ca 与 P、Al 与 K 呈显著正相关 性;Mn 与 Al 呈显著负相关性.研究还发现中太平洋结壳富 Co(0.63%)而贫 Cu(0.11%)及高 Fe(16.9%)低 Mn(21.3%) 的分布特征,与深海多金属结核在含量分布特征上存在较大差异.与多金属结核相比:结壳中 Mn 组元素含量显著降低,Fe 组元素含量和稀土总量明显增大,尤其是 Co 和 REEs 的变化最为突出,这种差异由二者成矿环境不同所致. 关键词:多金属结壳:地球化学;中太平洋.

中图分类号: P595 **文章编号:** 1000-2383(2004)03-0340-07 **收稿日期:** 2003-11-17

Geochemical Features of Multi-Metallic Crust in the Middle Pacific Ocean

ZHANG Hai-sheng^{1,2}, ZHAO Peng-da¹, HU Guang-dao¹

Institute of Mathematical Geology and Remote Sensing Geology, China University of Geosciences, Wuhan 430074, China
 Second Institute of Oceangraphy of SOA, Hangzhou 310012, China

Abstract: Multi-metallic crust from seamount is one kind of oceanic mineral resources with the most perspective exploitation. More than forty samples of the multi-metallic crust from six seamounts in the middle Pacific Ocean were analyzed by X-ray fluorescence and ICP-AES. Combining with the published data, the constituent variety and the elemental relationships are discussed under the consideration of the depth and topography of the crust derivation. The results show that the contents of the main ore-forming constituents in the samples from the middle Pacific Ocean are similar to those from the northwest Pacific Ocean and from Magellan, and that are slightly higher than those from Marshall. Obviously positive correlations between Ca and P, as well as Al and K, but negative correlation between Mn and Al, are found in the samples from the middle Pacific Ocean. Higher Co (0.63%), Fe (16.9%) and REEs, but lower Cu (0.11%) and Mn (21.3%) are also found in the middle Pacific Ocean than in the deep-sea multi-metallic nodules. The facts imply that the ore-forming environment of the crust and the nodule was different.

Key words: multi-metal crust; geochemistry; middle Pacific Ocean.

多金属结壳是一种生长于大洋硬质基岩上呈 "壳状"分布的铁锰沉积物,富含 Mn、Co、Pt、Ni、Pb、 Au、Ti、Ce 等多种金属,特别是陆地上较匮乏的 Co、 Pt 元素的含量可分别高达 2.5%和 2×10^{-6} (Witshire *et al.*, 1999),因此,多金属结壳亦被称之为富 钴结壳,是继大洋多金属结核之后另一种具有巨大 潜在经济价值的重要矿产资源.

富钴结壳主要赋存于板内热点成因的海山上, 在世界大洋广泛分布.其中,中太平洋海山区是富钴 结壳最为富集的地区(Halbach *et al.*, 1983)之一.

基金项目:大洋矿产资源勘探开发专项基金项目(DY105-01-01-8).

作者简介:张海生(1953-),男,研究员,主要从事海洋地球化学与矿产资源研究.

但至今为止,对该地区富钴结壳的调查与研究主要 集中在范围较窄的有关国家的专属经济区(EEZ) 内,而对其他范围内的调查与研究较少.其结果显然 不足以建立对该地区乃至全球大洋富钴结壳成矿特 征与成矿机制较全面的认识.富钴结壳元素的变化 是诸多地质作用的反映,因此,深入开展富钴结壳地 球化学特征与规律的研究,对于探讨大洋矿产资源 的成矿理论具有十分重要的意义.

本文通过对中太平洋 6 座海山 42 个站位多金 属结壳样品的分析与测试,对该海区结壳主要成矿 元素的组成、含量、变化,及元素间的相关关系等要 素进行了探讨,并结合其他调查资料进一步对大洋多 金属结壳的地球化学特征及其控制因素进行了研究.

1 元素的组成与变化

1.1 元素组成与丰度

海山富钴结壳所含元素的种类虽未能完全确 定,但多种分析测试结果表明,富钴结壳除由 Mn、 Fe、Co、Ni、Cu 等几种主要成矿元素组成外,还含有 多种常量和微量元素(Manheim and Lane-Bostwick, 1989; Takemetsu *et al.*, 1991; DeCarlo and McMurtry, 1992; Witshire *et al.*, 1999).元素 在富钴结壳中的丰度特征是结壳生长过程中各种地 质地球化学作用的综合体现,也是富钴结壳资源评 价的基础.通过对中太平洋6座海山40多个站位富 钴结壳的测试与分析,结果表明太平洋海山富钴结 壳元素丰度具有如下变化特征:

(1)亏损型元素.相对于地壳丰度,在海山富钴 结壳中亏损型元素主要是造岩元素 Al、Na、K 和 Mg,其中 Al 和 K 亏损程度相对较大(表 1).(2)轻 度富集型元素.相对于地壳丰度,富集程度相对较小 的元素主要是 Fe、Ti 和 P,约是地壳丰度的 $2 \sim 3$ 倍,Sr、Ba 和 V 约是地壳丰度的 $3 \sim 5$ 倍.(3)高度富 集型元素.相对于地壳丰度,在富钴结壳中高度富集 的元素主要有 Mn、Co、Ni、Cu、Zn、Pb、Mo 和 REEs.分别比其地壳丰度高出约 $1 \sim 4$ 个数量级, REEs 总量则约是其地壳丰度的 10 多倍(表 2).

1.2 元素的变化特征

1.2.1 太平洋不同区域结壳的成分变化特征 结 合其他海区的研究结果(Hein *et al.*, 1988;潘家华 和刘淑琴,1999),由表1,图1,2可见,中太平洋海

٢£

Table 1 comparison of main element contents in middle

	Pacific Oc	cean			$w_{ m B}/\%$
元素	中太平 洋海山	C C 区结核	西北 太平洋	麦哲伦 海山	马绍尔 群岛
Al	1.12	3.19	1.02	1.12	0.53
Ca	2.98	1.92	4.14	3.57	5.15
Ma	1.06	2.27	1.26	1.18	0.89
Р	0.62	0.32	1.18	0.80	1.51
Fe	16.86	5.52	15.09	16.04	12.20
Mn	21.26	30.14	22.06	22.84	18.80
Ba	0.18	0.21	0.17	0.16	0.16
Со	0.63	0.21	0.64	0.59	0.51
Cu	0.11	0.22	0.11	0.13	0.08
Ni	0.42	0.37	0.54	0.44	0.42
Pb	0.17	0.04	0.18	0.15	0.13
Zn	0.06	0.14	0.07	0.05	0.06
Ti	1.12				
Κ	0.54				
Na	1.40				
Sr	0.15				
V	0.05				
Mo	0.04				
Zr	0.06				
REEs	0.216	0.141		0.185	

样品采用 X 荧光分析法(XRF)和 ICP-AES 2 种方法测定.

山区与麦哲伦、西北太平洋、马绍尔等海山区相比, 结壳的化学成分十分接近,变化不大.其中,中太平 洋海山区结壳的主要成矿元素 Co 的含量与西北太 平洋相当,比麦哲伦、马绍尔海山的结壳高,Ni 的含 量以西北太平洋的结壳最高,中太平洋海山区最低; 中太平洋、西北太平洋海山结壳的 Cu 含量基本一 致,马绍尔海区的结壳偏低.结壳的主要成分 Fe、 Mn 在中太平洋、西北太平洋、麦哲伦地区结壳中的 含量相近,马绍尔海区的含量偏低.不难看出,中太 平洋、西北太平洋、麦哲伦地区结壳无论在主成分和 成矿元素的含量上都十分相近,而与马绍尔海区的 结壳差别较大.

Fig. 1 Changing characters of nodule in CC and crust in middle Pacific Ocean

表 2 中太平洋海山区富钴结壳稀十元素含量

Table 2 REEs contents of Co-rich crust in middle Pacific Ocean

Table 2					REEs contents of Co-rich crust in middle Pacific Ocean								$w_{ m B}/$ $^{0}\!\!\!/$			
站位	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Y	Ho	Er	Tm	Yb	Lu	TREE
CA01-1	267	971	56.3	238	54.4	12.2	53.0	7.7	42.6	137	8.2	20.7	3.0	19.2	3.0	1 893.3
CA04	277	$1\ 120$	57.8	243	55.9	12.5	54.1	8.0	45.8	166	8.9	23.2	3.4	22.2	3.4	2 101.2
CA06-2	340	1 0 1 0	70.4	302	68.2	15.5	67.8	10.2	58.5	199	11.7	30.4	4.5	28.9	4.4	2 221.5
CA09	253	908	45.8	200	44.1	10.1	47.9	7.3	44.5	194	9.4	26.3	4.0	25.8	4.2	1 824.4
CJ01S	338	986	68.6	301	67.0	15.5	68.8	10.2	59.2	198	11.7	30.8	4.5	28.5	4.4	2 192.2
CJ01M	219	898	48.1	207	48.0	11.4	47.5	7.1	40.1	154	7.9	21.1	3.1	19.8	3.2	1 735.3
CJ01B	315	$1\ 250$	68.7	288	66.5	14.8	64.5	9.7	56.4	190	11.3	29.7	4.5	29.5	4.6	2 403.2
CJ03	364	1 1 9 0	79.0	340	77.9	17.7	77.1	11.3	63.9	200	12.3	31.5	4.6	28.6	4.3	2 502.2
CH02S	252	1 340	43.4	178	38.4	8.4	40.0	5.8	33.8	189	7.2	19.7	2.8	17.8	2.9	2 179.2
CH02B	269	1 860	43.9	166	33.8	6.6	32.4	4.8	28.2	157	5.9	16.3	2.4	15.2	2.6	2 644.1
CB02	333	1 070	73.5	317	72.7	16.6	71.6	10.4	59.1	187	11.6	29.2	4.2	26.9	4.1	2 286.9
CB03	270	974	51.9	221	49.8	11.3	50.8	7.5	44.0	163	9.1	24.1	3.6	23.0	3.7	1 906.8
CB12S	352	989	71.0	311	70.0	16.0	70.5	10.7	61.6	212	12.5	32.6	4.8	30.4	4.7	2 248.8
CB12M	357	$1\ 780$	66.6	271	59.3	13.0	58.2	8.5	49.0	291	10.5	28.9	4.3	26.5	4.4	3 028.2
CB12B	321	1 490	61.1	251	54.7	12.0	54.3	8.0	46.7	239	9.9	26.8	4.0	25.0	4.0	2 607.5
CBD14	286	$1\ 157$	57.9	238	50.3	12.6	59.0	8.5	47.1	182	10.4	26.2	3.77	24.3	3.62	2 166.7
CA08	278	894	55.9	236	48.6	12.0	56.3	8.1	47.9	143	10.5	25.9	3.88	24.6	3.66	1 848.3
CB12	300	855	62.7	256	54.2	13.8	62.8	9.3	54.3	178	12.2	31.2	4.54	28.2	4.23	1 926.5
CH03	232	839	47.7	211	43.3	10.6	51.0	7.2	44.2	150	9.2	24.0	3.35	22.3	3.3	1 698.2
CH04	286	$1\ 027$	55.9	253	51.1	12.6	61.7	8.8	53.5	186	11.6	30.2	4.22	27.6	4.1	2 073.3
CH07	330	$1\ 139$	69.7	314	63.7	16	74.8	10.6	62.3	181	12.9	32.2	4.55	29.2	4.18	2 344.1
CJ01	323	$1\ 166$	67.4	284	60.3	14.5	67.1	9.8	56.3	165	12.0	30.1	4.35	27.7	3.98	2 291.5
CNW03	261	885	47.3	214	43.4	10.7	54.1	7.7	45.6	161	10.2	26.6	3.95	25.2	3.84	1 799.6
CNW04	309	840	59.3	266	54.9	13.5	65.8	9.2	53.6	284	12.1	31.0	4.37	28.4	4.11	2 035.3
最大值	364	$1\ 860$	79.0	340	77.9	17.7	77.1	11.3	63.9	291	12.9	32.6	4.8	30.4	4.7	3 028.2
最小值	219	839	43.4	166	33.8	6.6	32.4	4.8	28.2	143	5.9	16.3	2.4	15.2	2.6	1 698.2
平均值	297	1 105	59.5	254	55.3	12.9	58.9	8.6	50.0	188	10.4	27.1	3.96	25.3	3.88	2 160.0
IHST	228	1 1 9 4	32.5	146	27.4	7.12	35.3	5.78	36.8	365	9.27	28.7	4.02	26.6	4.2	2 150.7

样品采用 ICP-MC 法测定: [HST 指约韩斯顿岛结壳稀土元素平均值: [HST 数据引自 Bau et al. (1996).

表1的结果同时显示,与深海多金属结核相比, 太平洋海山结壳与结核的元素含量有明显差异(图 3). 结壳较明显显示出富 Co 而贫 Cu,高 Fe 低 Mn 的元素分布特征.其中,Mn组元素含量显著降低, 其中以 Ni 和 Cu 最为突出: Fe 组元素含量明显增 大,其中变化最大的是 Co 和 REEs: 生物成因组元

图 3 不同海区结壳成矿元素变化特征

素 P 和 Ca 含量增加;碎屑组元素含量明显降低;除 主要成矿元素的差异外,结壳的稀土总量也明显高 于结核.

1.2.2 中太平洋不同海山结壳主要成矿元素的变 化特征 通过对中太平洋海山区已初步调查的 CA、CB、CX、CNE、CNW、CH、CJ 6 座海山化学测

图 4 Fe、Mn 的变化特征

Fig. 4 Changing characters of Fe and Mn in different sea mountains of middle Pacific Ocean

Fig. 5 Changing characters of mineralization elements in different sea mountains of middle Pacific Ocean

试数据的统计表明,各海山的化学成分大同小异.主 成分 Fe 的含量除 CH 海山较低外,其他海山变化不 大; Mn 含量在 CX、CNE 海山则明显偏高(图 4). Co、Ni 的含量除 CNE 海山较高和 CJ 海山偏低外, 其他海山变化不大; Cu 的含量在各海山几乎完全一 致(图 5).

2 元素间的相互关系

Hein et al. (1988)和 Halbach et al. (1983)曾 对结壳中元素间的相关关系进行过研究.本文通过 元素相关关系分析,并结合结壳的矿物学、地球化学 等特征对结壳中的元素相互关系进一步进行讨论, 相关关系的结果见表 3 及图 6,7.

本区结壳中呈正相关关系的元素有: Mn 与 Co、Ni、Cu、Zn、Sr、Fe; Ca 与 P; Al 与 K、Na、Ti、 Mg、Si 等;呈负相关关系的元素有: Mn 与 Al、K、 Na、Ti、Ca、P; Co 与 Cu、Al、K、Ca、P、Ti; Fe 与 Ca、 Cu、K、P 以及 Al 与 Sr、Co、Mn、Ni 等.

结壳中 Co、Ni、Cu、Pt 等有用元素主要是以金 属络合离子形式被吸附于 Mn、Fe 氧化物上,如 Co、 Ni 主要是由 $\partial - MnO_2$ 吸附,Mn、Fe 的含量变化将 直接影响结壳中 Co、Ni、Cu 等的含量,因而 Mn 与 这些元素间存在正相关关系. Al 与 Si、Ti、Mg、K 等 元素的正相关关系,是由于这些元素是典型的硅铝 相元素,受沉积成岩作用强弱的控制,当结壳中存在 明显的空隙充填沉积物(主要是斑杂构造和葡萄状 构造)时,它们的含量就会相应增大. Ca 与 P 也是一 组成明显正相关关系的元素,这是由于海洋中钙、磷 元素的聚集主要都是由生物作用控制的,磷酸盐往 往交换沉积物和结壳中的碳酸盐,并常充填结壳中 的空隙和裂缝,磷酸盐的形成会抑制结壳的生长,磷 酸盐形成期,结壳可能会形成生长间断. 有些结壳呈 明显的分层性,其新老壳层间常常夹有磷、钙质沉积 物就是例证.

在呈负相关关系的元素中,Co 与 Al、Ca、P 等 元素负相关,说明了成岩作用对结壳形成的抑制作 用.Co 与 Cu 的负相关,如前所述,主要是由于海山 区的强氧化环境使 Co 易于由二价氧化成三价而被 δ -MnO₂ 吸附,而 Cu 则主要以有机络合离子形式 存在,难以结合进铁锰氧化物中.Mn 与 Al、K 等的 负相关,则说明 Mn 氧化物(δ -MnO₂)在成岩作用 弱的较强氧化环境中容易形成,是典型的水成成因 矿物,这也可以解释结壳与深海结核之间的区别.

3 地球化学特征的控制因素

3.1 富钴结壳元素含量与水深的关系

研究区结壳主要分布于水下1700~3500m的 平顶海山山坡上,其中以1700~2500 m 范围内结 壳最为发育,其结壳厚度和丰度均较大(图 8),如 CA 海山 CA09 站 (水深 1 717 m) 和 06 站 (水深 2 425 m)、CB 海山 03 站(水深 2 494 m)和 12 站(水 $(\mathbb{R}^2 381 \text{ m})$ 等,钻的含量都明显高于深水区,其他成 矿元素 Mn、Fe、Ni、Zn 含量也明显要高;而水深较 大的一些站位如 CA05 站(水深 3 260 m)和 CA03 (1)站(水深 3 500 m),结壳中钴等元素的含量明显 偏低,钻含量分别只有 0.37%和 0.47%,结壳的皮 层也很薄,结核粒径大多小于 2 cm;深水拖网所拖 到的样品主要以结核状和砾状结壳为主,其核心为 风化玄武岩、火山凝灰岩、磷酸盐岩和碳酸盐岩等, 钴含量明显偏低,其他成矿元素 Mn、Fe、Ni、Zn 含 量也较低,而Si、Al、Mg、K、Na 含量较高. 平顶海山 山顶的缓坡区采到的样品也主要以结核为主,其核 心较大,壳层薄,钴的含量也很低.

Fig. 7 Relationship between Mn and Co of crust

Fig. 8 Relationship between water depth and Co of crust

3.2 结壳元素含量与地形的关系

对结壳与海山地形地貌的关系,Halbach et al. (1983)认为,平顶海山的椭圆状分支或支脉及其边 缘,富钴结壳厚度最大,Co含量最高.本文研究中的 CA09-2、CA06、CA02、CB02、CB09-2及CB12等 站位都位于此类椭圆形分支及其边缘,均采得了厚 度大、Co含量高的样品.证实了这一结果,但同时也 发现南坡结壳发育要优于北坡,这可能有两方面的 原因:一是南极底层流的作用.南极底层流基本上是 从南向北流经本区,南坡直接受到南极底层流的冲 刷,使生物碎屑等沉积物很难在坡上沉积,又能提供 丰富的氧,使氧化环境加强而有利于钴的富集.另一 方面的原因可能与海山微地貌或成矿物质来源等有 关,有待进一步探讨.

3.3 结壳类型与结壳钴含量关系

富钴结壳按其形状可分为板状结壳、结核状结 壳、砾状结壳3类,表4分别为板状结壳、结核状结 壳、砾状结壳主要成矿元素的分析结果,不同类型结 壳钴含量分析结果显示,板状结壳钴的含量最高 (0.67%),结核状结壳其次(0.63%),砾状结壳最小 (0.53%), 而主要成矿金属元素铁、锰在板状结壳和 结核状结壳中的变化不大:Mn 在板状结壳和结核 状结壳中含量分别为 22.42%和 22.30%, Fe 在板 状结壳和结核状结壳中含量分别为 16.05% 和 15.89%,含量都比较接近,Mn/Fe比值也基本相 同,因此成矿环境可能相差不大;而砾状结壳中 Mn 含量明显比上述板状结壳和结核状结壳低,Fe含量 则如此,Mn/Fe比值略有增加,核心物质常见有沉 积物、玄武岩和磷酸盐化灰岩(CA27、CL02-2、 CW09, CW15 - 2, -2a, CW19, a, CW22(1) - 1, -1a、CX03、CX07)等,尤其是 CW09 站中 Mn 为 22.83%属正常含量,Fe为9.39%在结壳中属低含 量,Si和 Al的含量也明显降低,导致了本站 Mn/Fe比值 2.43 明显升高,另一个特征是磷灰石组分 CaO 和 $P_{2}O_{5}$ 含量明显增高(加和达 21.7%),铁、钴等金 属组分的形成受到显著抑制:但在 CW16、CX03、 CL08 测站中出现了铁含量明显高干锰含量,在结 壳成矿中可能出现明显的针铁矿,标志着富钴结壳 中含铁量显著增高,因此,这些站位可能是成矿环境 和矿物组分发生变化所致.

Table 4	Contents	variation	of	different	crust	type
Table 4	Contents	variation	01	unicient	crust	type:

_							
结壳类型		w(Mn)/%	w(Fe)/%	w(Co)/%	w(Ni)/%	w(Cu)/%	w(Mn)/w(Fe)
板化体车	平均	22.42	16.05	0.67	0.42	0.13	1.43
112 17 50 70	最大	26.39	20.58	0.86	0.62	0.22	1.96
n = 57	最小	16.38	12.57	0.53	0.26	0.06	0.84
结核状结壳	平均	22.30	15.89	0.63	0.47	0.15	1.41
	最大	24.19	17.24	0.70	0.53	0.18	1.60
n = 12	最小	20.14	15.08	0.59	0.38	0.10	1.17
砾状结壳	平均	21.63	14.87	0.53	0.45	0.19	1.51
	最大	22.95	16.66	0.58	0.65	0.22	2.43
n=8	最小	18.99	9.39	0.42	0.33	0.08	1.14

4 结论

结壳元素的变化及其成矿作用是诸多地质作用 的反映,从以上富钴结壳地球化学特征与水深、地形 和类型的关系分析中可以看出,富钴结壳中化学元 素的变异主要是由富钴结壳所处的环境的氧化还原 条件和沉积速率所控制,与深海多金属结核相比,富 钴结壳一般形成于最低含氧层之下,CCD带以上有 富含氧的南极底层流流经的海山斜坡的裸露基岩, 较强的氧化环境很容易使 Mn²⁺ 被氧化成 Mn⁴⁺ 而 形成 δ – MnO₂, Fe²⁺ 被氧化成 Fe³⁺ 而形成铁的水 合氢氧化物 $FeOOH \cdot xH_2O$,这 2 种胶体化学的、 隐晶质的矿物通过同构衍生形成水羟锰矿集合体, 具有很强的吸附作用,从而富集了 Co、Ni、Cu 等多 种有用金属元素.海山区相对较强的氧化环境,也有 利于变价元素 Fe、Co、Pb 和 Ce 的氧化沉淀. 尽管海 山区的氧化环境有利于元素的共生与聚集,但海山 的不同位置(水深)及构造运动、气候变化等所导致 的海平面的升降、CCD 面的波动、最低含氧层的扩 大,以及海流的改变和南极底层流的强弱变化,势将 导致结壳生长环境中氧化还原条件和沉积速率的变 化,从而控制和影响富钴结壳的地球化学变异,如对 富钴结壳结构与构造的研究结果表明(另文发表), 富钴结壳多层结构所体现的明暗相间的微纹层构 造,暗示着其生长环境中氧化还原条件和沉积速率 的周期性变化.构造运动、火山活动、气侯变化和底 流的突然改变等往往造成结壳中元素含量的异常变 化,研究区富钴结壳中富含磷酸盐,特别是在老壳层 中,正是由于海山处于高生物生产力带的浅水区域 时上升涌流发育,环境的氧化还原条件由较氧化转 为较还原时形成的.

References

- DeCarlo, E. H., McMurtry, G. M., 1992. Rare earth elements geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific. *Marine Geology*, 95: 235-250.
- Halbach, P., Segl, M., Puteanus, D., et al., 1983. Relationships between Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. *Nature*, 304:716-719.
- Hein, J. R., Schwab, W. C., Davis, A. S., 1988. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. *Marine Ge*ology, 78:255-283.
- Manheim, F. T., Lane-Bostwick, C. M., 1989. Chemical composition of ferromanganese crusts in the world ocean; A review and comprehensive database. U. S. Geologic Survey Open-File Report.
- Takematsu, N., Sato, Y., Okabe, S., 1991. Factors controlling the chemical composition of marine manganese nodules and crusts: A review and synthesis. *Marine Chemistry*, 26:41-56.
- Pan, J. H., Liu, S. Q., 1999. Distribution, composition and element geochemistry of Co-rich crusts in the western Pacific. Acta Geoscientia Sinica, 20(1): 47-54 (in Chinese with English abstract).
- Witshire, J., Wen, X. Y., Yao, D., 1999. Ferromanganese crusts near Johnston Island: Geochemistry, stratigraphy and economic potential. *Marine Georesources and Geotechnology*, 17:257-270.

附中文参考文献

潘家华,刘淑琴,1999.西太平洋富钴结壳的分布、组成及元 素地球化学.地球学报,20(1):47-54.