西藏特提斯喜马拉雅白垩纪中期 Cenomanian-Turonian 期碳同位素偏移

李祥辉¹,王成善²,Hugh C. Jenkyns³,成鑫荣⁴,崔 杰¹,胡修棉⁵

1. 成都理工大学油气藏地质与开发工程国家重点实验室,四川成都 610059

2. 中国地质大学地球科学与资源学院,北京 100083

3. Department of Earth Sciences, University of Oxford, Oxford, UK

4. 同济大学海洋地质教育部重点实验室,上海 200092

5. 南京大学地球科学系,江苏南京 210093

摘要:过去大量关于白垩纪中期 Cenomanian-Turonian 時期的古海洋及其界线時期缺氧事件研究的高分辨率碳氧同位素 的实际材料绝大多数都来自深海钻探(DSDP)、大洋钻探(ODP)和欧美的一些较深水盆地.通过对西藏南部地区(位处特提 斯洋东南)同一层位高分辨率碳同位素分析,目的在于为 Cenomanian-Turonian 古海洋及全球事件的碳同位素响应提供西 藏地区的对比材料,并试图就浅海相的变化情况进行探讨.西藏定日和岗巴地区的高分辨率碳同位素分析结果显示,&^{la}C 值在 Cenomanian 中晚期稳定,Cenomanian-Turonian 界线时期快速高幅正偏,Turonian 期持续负偏,这种长期变化趋势在 特提斯甚至全球可以对比.深入研究还发现,Turonian 中后期存在 2 个较大幅度的负偏凹陷区,与来自欧洲的相关资料在 偏移时间和幅度方面惊人相似.对比分析表明,岗巴地区 &^{la}C 值长期变化和短期波动幅度及步调与定日及全球其他地区存 在一定差别,幅度差异可能与样品制备和成岩改造有关,步调不一致则可能受生物地层定位的影响.研究区近海一半远洋环 境 Cenomanian-Turonian 界线时期未出现典型富有机质黑色页岩,说明 &^{la}C 值极度正偏与黑色页岩的出现并非一一对应. 关键词:碳同位素,Cenomanian 期,Turonian 期;白垩纪;特提斯喜马拉雅,西藏.

中图分类号: P59;Q91 **文章编号**: 1000-2383(2005)03-0317-11

收稿日期:2004-11-24

Bulk Carbon Isotope Excursions of the Cenomanian through Turonian of Mid-Cretaceous in Southern Tibet

LI Xiang-hui¹, WANG Cheng-shan², Hugh C. Jenkyns³, CHENG Xin-rong⁴, CUI Jie¹, HU Xiu-mian⁵

1. State Key Laboratory of Oil-Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

2. School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

3. Department of Earth Sciences, University of Oxford, Oxford, UK

4. Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

5. Department of Earth Sciences, Nanjing University, Nanjing 210093, China

Abstract: In the past, huge high-resolution data of carbon and oxygen isotopic values on paleoceanography of the Cenomanian-Turonian and on anoxic event of its boundary passage were derived from DSDP, ODP and deeper basins in Euramerica, but few and rough data relevant came from southern Tibet, China. The new carbon isotope high-resolution data of the Cenomanian-Turonian in this paper aim to provide a correlation among Euramerica, DSDP, ODP and southeastern Tethys Ocean (southern Tibet), and try to characterize the carbon isotopic curve in shallower lithofacies background. Carbon isotopic values obtained from the Gongzha Section of Tingri and the Zongshan Section of Gamba, in southern Tibet, indicate a long-term tendency of Cenomanian through Turonian similar to those from Tethys even globe. The carbon isotopic values seldom

作者简介:李祥辉(1964一),男,博士,副教授,主要从事沉积学和古海洋学研究与教学. E-mail: lixh@cdut.edu. cn

基金项目:国家自然科学基金项目(No. 40273014);国家自然科学重点基金项目(No. 40332020).

change in the middle-late Cenomanian. An abrupt and high-amplitude positive excursion occurs near the passage bed of Cenomanian and Turonian, then goes negative in gradual in whole Turonian. At the same time, two negative excursion troughs are recognized at both the middle *H. helvetica* zone and the boundary of the *H. helvetica* and *M. sigali* zones by a moderate positive area between, which is the same as in Europe and ODP in time and pace and is in harmony with the global carbon cycle and climate changes. However, the much alterable excursions and paces of the δ^{13} C value at Gamba are different from those at Tingri and other locations in the world. The former difference may be the result of diagenetic overprint, and the latter may be mistaken biozone positions. According to the potential correlation tool of carbon isotopes, it is suggested that the horizon of the Cenomanian-Turonian boundary may need to be promoted upward ca. 40 m. Lack of typical organic black shale at the Cenomanian-Turonian boundary in shallow sea area including southern and northern Tibetan Tethys Himalayas indicates the high δ^{13} C values in the oceanic sediments are not the unique result of the oceanic anoxic event but a mixed response of global carbon reservoir.

Key words: carbon isotope; Cenomanian; Turonian; Cretaceous; Tethys Himalayas; Tibet.

0 引言

白垩纪中期作为地球历史上十分重要的时期之 一,具有全球大气 CO, 含量高、洋面温度纬向梯度 低和深水温度高(Hay, 1995)、富有机质黑色页岩 分布广(Jenkyns, 1980; Schlanger et al., 1987)的 特点.对于黑色页岩,地质学家趋同于用大洋缺氧事 件(OAE, Schlanger and Jenkvns, 1976)来解释其 成因.其中,Cenomanian-Turonian 界线(CTB)事件 (OAE2) 已经从全球性分布 (Jenkyns, 1980; Bralower, 1988; Leary et al., 1989; Wilson and Norris, 2001)、生物绝灭(Jarvis et al., 1988; Hart and Leary, 1991)、碳同位素偏移(Voigt, 2000; Wilson and Norris, 2001; Gustafsson et al., 2003; Tsikos et al., 2004) 等方面得到了充分证 实,近来,通过高分辨率碳同位素研究,人们还发现, CTB 之后的 Turonian 晚期存在 2 个负偏区,并提 出了脉动式气候变冷的设想(Voigt, 2000; Wiese and Voigt, 2002).

然而,上述成果主要来自 DSDP/ODP 和欧洲, 如南英格兰(Jarvis *et al.*, 1988; Keller *et al.*, 2001)、法国南部(Crumiere, 1988)、意大利亚平宁 (Arthur and Premoli-Silva, 1982; Schlanger *et al.*, 1987)、卡尔巴阡(Peryt and Wyriwicka, 1991) 等地区;而且,其沉积背景主要是外陆棚之外的远洋 环境,对于半远洋泥质陆棚和碳酸盐缓坡,其应用情 况知之甚少,仅在德国的北方区浅水(Hilbrecht *et al.*, 1996)、北西班牙混积陆棚(Wiese, 1999)和克 罗地亚碳酸盐台地(Davey and Jenkyns, 1999)有报 道.对于古地理位置在半远洋陆棚地带的西藏特提 斯喜马拉雅,尽管新近有少量资料公布(Wang*et*

图 1 西藏南部构造分带和剖面位置图

Fig. 1 Tectonic zonation of South Tibet with locations of cross-sections

1. 冈底斯弧;2. 日喀则弧前盆地;3. 雅鲁藏布江缝合带;4. 特提斯 喜马拉雅;5. 结晶喜马拉雅;6. 构造分带的主要断裂;7. 剖面位置. A. 特提斯喜马拉雅南亚带;B. 特提斯喜马拉雅北亚带

al., 2001; Wan et al., 2003a, 2003b),但主要集 中在 CTB 过渡层,而且采样间距较大(岗巴采样间 距平均约 6 m,定日间距平均约 3 m).本文通过高分 辨率(采样间距平均 0.3~0.4 m)的碳同位素实验 结果分析,描述 Cenomanian 阶-Turonian 阶的碳同 位素比值(∂^{13} C)偏移形式,并试图就与全球有关地 区的对比关系和地层问题进行讨论.

研究区位于西藏南部的特提斯喜马拉雅北亚带 (Wang et al., 1996),属于古代印度次大陆北部被 动大陆边缘的陆棚带.本文涉及的定日贡扎剖面位 于定日地区遮普惹山向斜的西北侧,北距珠穆朗玛 峰约 75 km;岗巴宗山剖面则位于岗巴县城的南东 侧约 0.5 km(图 1).

1 岩层和地层时代限定

与 Cenomanian-Turonian 阶有关的岩石地层单 元为冷青热组和岗巴村口组,前者主要为钙质页岩

图 2 西藏定日贡扎剖面 Cenomanian-Turonian 阶地层格架及碳氧同位素偏移图

Fig. 2 Stratigraphic framework and δ^{13} C and δ^{18} O value variations of the Cenomanian-Turonian at the Gongzha Section, Tingri

@. Coniacian 阶; *. D. primitiva 带; a. 微晶灰岩; b. 有孔虫微晶灰岩

夹泥灰岩,后者以中薄层泥灰岩、微晶灰岩为主.总 为碳酸盐中一深缓坡半远洋泥灰岩、(含)有孔虫生的来看,定日地区的白垩系中部以灰泥质为主,显示 物微晶灰岩,局部见有孔虫灰岩;岗巴地区中白垩统

表1 西藏定日贡扎剖面 Cenomanian-Turonian 期碳氧同位素比值

Table 1 Carbon and oxygen isotopic values in the Cenomanian-Turonian at the Gongzha Section, Tingri

样品编号	层位/m	岩性	$\delta^{13}\mathrm{C}$	$\delta^{18}O$	样品编号	层位 /m	岩性	$\delta^{13}C$	$\delta^{18}O$	样品编号	层位 /m	岩性	$\delta^{13}C$	$\delta^{18}O$
03GP013	5.25	MM	1.936	-5.986	03GP122	43.50	MM	2.598	-6.398	03GP197	69.20	MM	2.519	-5.784
03GP014	5.75	MM	1.975	-6.698	03GP123	43.85	MM	2.697	-5.989	03GP198	69.50	MM	2.486	-5.266
03GP015	6.20	MM	1.920	-7.123	03GP124	44.25	MM	2.524	-5.696	03GP199	69.75	MM	2.553	-5.749
03GP016	6.70	MM	1.735	-6.580	03GP125	44.65	MM	2.675	-5.956	03GP200	70.00	MM	2.542	-5.793
03GP017	7.20	MM	1.573	-6.457	03GP126	45.00	MM	2.485	-5.769	03GP201	70.35	MM	2.528	-5.686
03GP018	7.60	MM	1.383	-6.302	03GP127	45.30	MM	2.623	-5.914	03GP202	70.65	MM	2.335	-5.624
03GP019	8.15	MM	1.683	-6.336	03GP128	45.60	MM	3.026	-5.922	03GP203	70.85	ΡK	2.008	-5.829
03GP020	8.90	MM	1.619	-6.122	03GP133	47.25	MM	3.250	-5.751	03GP204	71.10	ΡK	1.939	-5.870
03GP021	9.40	MM	1.518	-6.194	03GP134	47.60	MM	3.435	-5.920	03GP205	71.40	ΡK	1.894	-6.123
03GP022	9.80	MR	1.706	-6.416	03GP135	47.90	MD	3.443	-5.788	03GP206	71.70	ΡK	2.046	-5.581
03GP024	10.20	MM	1.540	-6.196	03GP136	48.25	MM	3.508	-6.041	03GP207	72.00	MM	2.159	-5.762
03GP025	10.50	MM	1.520	-6.151	03GP137	48.60	MR	3.384	-6.640	03GP208	72.45	MM	2.193	-5.672
03GP026	10.90	MM	1.479	-6.232	03GP138	48.90	MD	3.466	-5.936	03GP209	72.60	MD	2.309	-5.699
03GP027	11.30	MM	1.535	-6.289	03GP139	49.30	MM	3.590	-5.985	03GP210	73.10	MD	2.262	-5.788
03GP028	11.75	MR	1.492	-6. 144	03GP140	49.65	MM	3.480	-5.836	03GP211	73.50	MD	2.224	-5.719
03GP029	12.25	MR	1.702	-6.478	03GP141	50.00	MM	3.296	-5.980	03GP212	73.80	MD	2.220	-5.818
03GP030	12.70	MR	1.738	-6.064	03GP142	50.30	MM	3.461	-5.913	03GP213	74.20	MD	2.064	-5.804
03GP031	13.15	MM	1.767	-6.366	03GP143	50.60	MD	3.283	-5.969	03GP214	74.45	WK	1.947	-5.749
03GP032	13.60	MR	1.719	-7.133	03GP144	50.90	MM	3.242	-5.878	03GP215	74.80	WK	2.005	-5.699
03GP033	14.10	MR	1.709	-6.185	03GP150	52.85	MM	3.315	-6.010	03GP216	75.15	WK	1.923	-5.686
03GP034	14.55	MM	1.514	-6.130	03GP151	53.20	MM	3.464	-5.922	03GP217	75.45	ΡK	1.826	-5.753
03GP040	16.60	MR	1.853	-6.809	03GP152	53.60	MM	3.110	-5.800	03GP218	75.90	ΡK	1.727	-5.984
03GP045	18.30	MR	1.684	-7.332	03GP153	54.05	MM	3.600	-5.976	03GP219	76.30	WK	1.712	-5.748
03GP050	19.90	MR	1.376	-6.597	03GP154	54.35	MM	3.302	-5.806	03GP220	76.70	WK	1.828	-5.589
03GP060	22.75	MR	1.545	-6.617	03GP155	54.75	MM	3.205	-5.540	03GP221	77.05	WK	2.003	-5.783
03GP065	24.15	MR	1.549	-7.009	03GP156	55.15	MM	3.085	-5.985	03GP222	77.40	WK	1.820	-6.035
03GP068	25.05	MR	1.706	-6.871	03GP157	55.45	MM	3.331	-5.910	03GP223	77.80	WK	1.790	-5.847
03GP069	25.35	MR	1.507	-6.390	03GP158	55.85	MM	3.324	-5.596	03GP224	78.10	MD	1.993	-5.797
03GP070	25.70	MR	1.775	-6.689	03GP159	56.30	MM	3.512	-5.806	03GP225	78.40	MD	2.018	-5.762
03GP071	26.00	MR	1.757	-6.604	03GP160	56.75	WK	3.290	-5.938	03GP226	78.70	MD	2.030	-6.102
03GP072	26.30	MR	1.576	-6.480	03GP161	57.10	MD	3.474	-5.970	03GP227	79.00	MD	2.010	-5.833
03GP073	26.60	MM	1.506	-6.168	03GP162	57.50	MD	3.447	-5.950	03GP228	79.35	MD	1.988	-5.923
03GP074	26.90	MM	1.545	-6.168	03GP163	57.85	MD	3.516	-5.971	03GP229	79.65	MD	2.021	-5.921
03GP075	27.30	MM	1.622	-6.041	03GP164	58.20	WK	3.366	-6.111	03GP230	79.95	MD	1.996	-6.458
03GP077	27.80	MR	1.655	-6.609	03GP165	58.50	WK	3.277	-5.968	03GP231	78.25	MD	1.995	-5.943
03GP078	28.10	MR	1.592	-7.043	03GP166	58.90	WK	3.374	-5.866	03GP232	78.50	MD	2.047	-5.827
03GP079	28.40	MR	1.638	-6.679	03GP167	59.30	WK	3.440	-5.806	03GP233	78.65	MD	2.099	-5.992
03GP080	28.70	MR	1.693	-6.367	03GP168	59.75	WK	3.189	-5.943	03GP234	78.90	MD	2.156	-6.000
03GP081	29.00	MR	1.716	-6.760	03GP169	60.20	WK	3.015	-5.478	03GP235	81.15	MD	2.141	-5.814
03GP082	29.40	MR	1.692	-6.590	03GP170	60.50	WK	3.112	-5.927	03GP236	81.50	MD	2.197	-5.805
03GP084	30.00	MM	1.791	-6.278	03GP171	60.75	WK	3.061	-5.853	03GP237	81.75	MD	2.179	-5.708
03GP085	30.40	MR	2.143	-5.929	03GP172	61.15	MD	3.163	-5.317	03GP238	82.20	MD	2.165	-5.817
03GP086	30.80	MR	1.726	-5.698	03GP173	61.60	MD	3.094	-5.636	03GP239	82.45	MD	1.890	-5.581
03GP087	31.15	MM	1.674	-6.100	03GP174	62.00	MD	3.093	-5.654	03GP240	82.75	MD	2.272	-5.492
03GP088	31.50	MR	1.679	-6.099	03GP175	62.40	WK	2.720	-5.664	03GP241	83.00	MD	2.203	-5.501
03GP089	31.80	MM	1.519	-6.158	03GP176	62.75	WK	2.732	-5.842	03GP242	83.30	MD	2.278	-5.417
03GP090	32.20	MM	1.517	-6.225	03GP177	63.15	MD	2.888	-5.847	03GP243	83.60	MD	2.191	-5.132
03GP091	32.50	MM	1.669	-6.090	03GP178	63.45	MD	2.692	-5.953	03GP244	83.85	MD	2.185	-5.435
03GP092	32.80	MM	1.745	-5.880	03GP179	63.80	MD	2.864	-5.899	03GP245	84.20	MD	2.167	-5.513
03GP093	33.20	MR	1.705	-6.673	03GP180	64.15	MD	2.772	-5.722	03GP246	84.50	MD	2.224	-5.249
03GP094	33.50	MR	2.252	-6.425	03GP181	64.35	MD	2.648	-5.642	03GP247	84.90	MD	2.173	-5.584
03GP095	33.90	MR	1.746	-6.218	03GP182	64.75	WK	2.420	-5.558	03GP248	85.20	MM	2.224	-5.346

续表1

样品编号	层位 /m	岩性	$\delta^{13}C$	$\delta^{18} \mathrm{O}$	样品编号	层位 /m	岩性	$\delta^{13}C$	$\delta^{18} \mathrm{O}$	样品编号	层位 /m	岩性	$\delta^{13}C$	$\delta^{18} \mathrm{O}$
03GP096	34.30	MR	1.714	-6.018	03GP183	65.10	MM	2.574	-5.731	03GP249	85.65	MM	2.159	-5.518
03GP097	34.65	MR	1.518	-6.247	03GP184	65.40	MM	2.562	-5.752	03GP250	86.00	MD	2.195	-5.369
03GP103	36.15	MM	1.720	-6.259	03GP185	65.70	MM	2.759	-5.752	03GP252	86.30	MD	2.164	-5.491
03GP104	36.80	MM	1.886	-5.889	03GP186	66.00	MM	2.553	-5.682	03GP253	86.70	MD	2.141	-5.214
03GP105	37.20	MR	1.965	-5.914	03GP187	66.30	MM	2.632	-5.575	03GP254	87.05	MD	2.038	-6.177
03GP106	37.65	MM	1.843	-5.936	03GP188	66.65	MR	2.725	-5.760	03GP255	87.35	MD	2.300	-5.432
03GP107	38.00	MM	1.922	-6.705	03GP189	67.00	MR	2.582	-5.599	03GP256	87.75	MD	2.238	-5.689
03GP108	38.40	MR	1.980	-6.152	03GP190	67.30	MM	2.535	-5.853	03GP257	88.00	MD	2.306	-5.707
03GP109	38.80	MR	2.064	-6.028	03GP191	67.65	MM	2.790	-5.835	03GP258	88.25	MD	2.348	-5.372
03GP110	39.30	MR	2.187	-6.057	03GP192	67.95	MD	2.496	-5.710	03GP259	88.55	MD	2.296	-5.792
03GP111	39.70	MM	1.986	-6.313	03GP193	68.20	MD	2.487	-5.699	03GP260	88.80	MD	2.328	-5.843
03GP116	41.30	MR	1.886	-5.414	03GP194	68.45	MD	2.677	-5.776	03GP261	89.05	MD	2.314	-5.840
03GP120	42.75	MM	2.446	-6.188	03GP195	68.70	MM	2.575	-5.719	03GP262	89.40	MR	2.373	-5.329
03GP121	43.05	MM	2.907	-6.289	03GP196	68.95	MM	2.516	-5.641	03GP263	89.80	MD	2.185	-5.914

MR. 泥灰岩; MM. 含泥质微晶灰岩; MD. 微晶灰岩; WK. 生物微晶灰岩; PK. 微晶生物灰岩. ∂¹³ C 和 ∂¹⁸ O 的单位为 10⁻³ PDB, 下同.

主体为陆棚半远洋泥质沉积,中上部夹含中薄层泥 灰岩和微晶灰岩或者互层.

在定日贡扎剖面,赵文金和万晓樵(2003)研究 并报道了 CTB 附近的生物绝灭和复苏. 考虑到分辨 率和其他因素,笔者重新测制了该剖面,并分析获得 了有孔虫生物化石带 R. reicheli、R. cushmani、W. archaeocretacea、H. helvetica、M. sigali 和 D. primitiva 的材料. 鉴于缺乏菊石和钙质超微化石辅 助依据,根据东特提斯 CTB 浮游有孔虫 H. prehelvetica 的首现(Kassab and Obaidalla, 2001; Wan et al., 2003b),本文暂将 CTB 年代地层界线 置于W. archaeocretacea 的上部,即位于距剖面底 部 62.4 m(样品 03GP174 与 175 之间)处;并依据 M. sigali 和 D. primitiva 两带出现和消失的位 置,准确地将 Turonian 阶与 Coniacian 阶的界线 (TCB) 定位在 87.05~87.35 m(样品 03GP254 与 255)之间,根据岩性变化,冷青热组和岗巴村口组界 线确定在 54 m 位置,即样品 03GP152 与 153 之间 (图 2 和表 1).

在岗巴地区,前人工作基础较好,相关的生物地 层基本确立.对于本文进行同位素分析的岗巴宗山 剖面,万晓樵提供了有孔虫资料,并结合前人成果 (赵文金和万晓樵,2001)和钙质超微化石(Zhong et al.,2000),建议将 CTB 放置于 W. archaeocretacea 带内的 35.0 m 和 36.0 m(样品 GG02-02-02 与 GG02-02-03)之间,把 TCB 定位在157 m与 158 m (GG02-12-05 和 GG02-12-05')之间;岩石地层单元 冷青热组和岗巴村口组界线界定在 56 m 与 57 m (GG02-03-18 和 GG02-04-01)之间(图 3 和表 2).

2 材料与方法

笔者在定日贡扎剖面 Cenomanian-Turonian 阶 厚 90 m 范围内新鲜露头采集了 263 件全岩样品,通 过除去部分成岩改造、生物扰动较强和微裂隙发育 的样品,最后在85m范围内选取了196件样品进行 碳氧同位素分析.大部分样品采集密度在 30~ 40 cm范围, Cenomanian 阶上部 R. cushmani 带底 部约 10 m 范围内采样间距在 100~150 cm 之间.因 此,该剖面的总平均采样间距约为 43 cm. 按照化石 带(R. reicheli~ M. sigali)的大致范围和新的地 **质年龄标准**(Gradstein *et al.*, 2004)约为7.0 (96.3~89.3)Ma计算,采样间距的时间分辨率平均 为35.7(7.0 Ma/196 样品)ka(千年).该剖面所有全 岩样品碳氧同位素分析均在英国牛津大学同位素实 验室完成.小于 200 目粉末样品通过直径为 3 mm 的球形钻头高速转动直接刮进容器,分别用双氧水 和丙酮酸浸泡,60 ℃烘干后送入真空制碳仪并自动 连接到 Finnigan MAT 252 质谱仪. 每次分析均插入 3~5件标样进行检验,2004 年 10 月实验误差为 $\pm 0.04 \times 10^{-3}$,所有结果均换算为 PDB 标准.

岗巴宗山剖面进行碳氧同位素分析的 Cenomanian-Turonian 阶厚度 160 m,共采集分析了 80 件样 品,平均间距 2 m. 按照化石带 R. cushmani~M. sigali 带的延时约 6.5 Ma(Gradistein et al., 2004) 计算,平均样品间距时限(分辨率)为 81.3 ka. 岗巴 宗山剖面全岩样品在同济大学海洋地质教育部重点 实验室完成. 样品制备首先通过手工碎样选样,在玛

 δ^{13} C/(10⁻³ PDB) δ^{18} O/(10⁻³ PDB) 有孔 虫化 石带 比例尺 岩性 描述 组 岩性柱 阶 m -15.000 -6.000 0.500 1.500 2.500 3.500 -9.000 -12.000 (a) * 160 12-05 页岩和 灰泥灰 岩互层 Π 150 140 M. sigali 130 暗灰色钙 质页岩含 灰泥灰岩 m m 120 ------岗 巴 110 村 09-06 Turonian П -00-灰泥灰岩 含钙质页 岩 100 09-05 m 组 90 ____ ____ -00-------暗灰色钙 质页岩 helvetica 80 H. Т E 灰泥灰岩 含页岩 70 -С 暗灰色钙 质页岩 60 04-01 03-18 灰泥灰岩 含页岩 50 archaeocretacea 页岩和灰 泥灰岩互 层 40 Т 02-03 С 冷 02-02 A 30 青 01-06 热 Cenomanian 组 20 黄绿色 页岩 cushmani 10 N. 黄绿色 页岩 灰色钙 质页岩 中-薄层泥灰 岩-灰泥灰岩

图 3 西藏岗巴宗山剖面 Cenomanian-Turonian 阶地层格架及碳氧同位素偏移

m

Fig. 3 Stratigraphic framework and δ^{13} C and δ^{18} O value variations of the Cenomanian-Turonian at the Zongshan Section, Gamba @. Coniacian 阶; *. D. primitiva 带;细虚线为生物地层大致划分的 CTB;粗虚线为碳同位素推荐的 CTB

瑙研钵中研磨成 200 目以下粒度. 2004 年 5 月分析 结果 3 的实验误差 $>\pm 0.08 \times 10^{-3}$,其他实验过程和结果 表示与牛津大学相同.

定日贡扎剖面∂¹³C值在Cenomanian阶R. reich-

表 2 西藏岗巴宗山剖面 Cenomanian-Turonian 期碳氧同位素比值

Table 2 Carbon and oxygen isotopic values in the Cenomanian-Turonian at the Zongshan Section, Gamba

样品编号	层位 /m	岩性	$\delta^{13}\mathrm{C}$	$\delta^{18}O$	样品编号	层位 /m	岩性	$\delta^{13}C$	$\delta^{18}O$
GG02-01-01	1.0	钙质页岩	0.892	-9.937	GG02-06-03'	77.0	微晶灰岩	2.400	-7.490
GG02-01-02	5.0	钙质页岩	1.028	-10.246	GG02-07-01	80.0	钙质页岩	2.448	-9.695
GG02-01-03	11.0	钙质页岩	1.146	-9.509	GG02-07-02	82.0	钙质页岩	1.944	-9.859
GG02-01-04	18.0	钙质页岩	0.986	-9.217	GG02-07-03	84.0	钙质页岩	1.906	-10.018
GG02-01-05	23.0	钙质页岩	0.973	-9.546	GG02-07-04	86.0	钙质页岩	1.814	-10.389
GG02-01-06	28.7	钙质页岩	0.992	-10.333	GG02-07-05	88.0	钙质页岩	1.393	-9.578
GG02-01-07	34.0	钙质页岩	1.141	-8.753	GG02-07-06	90.0	钙质页岩	1.374	-8.227
GG02-02-01	35.0	页岩	0.865	-8.440	GG02-08-01	91.0	钙质页岩	2.203	-7.372
GG02-02-02	36.0	页岩	1.636	-10.247	GG02-08-02	92.0	钙质页岩	2.056	-8.983
GG02-02-03	37.0	页岩	1.455	-10.045	GG02-08-03	93.0	钙质页岩	2.059	-7.246
GG02-02-04	38.0	页岩	0.969	-8.117	GG02-09-01	94.0	钙质页岩	1.946	-9.575
GG02-02-05	39.0	页岩	1.017	-8.989	GG02-09-02	96.0	钙质页岩	1.509	-8.789
GG02-02-07	40.5	页岩	0.909	-8.350	GG02-09-03	98.0	钙质页岩	1.997	-9.080
GG02-02-09	41.5	页岩	0.629	-9.456	GG02-09-05	102.0	钙质页岩	2.008	-8.604
GG02-03-01	43.7	生物微晶灰岩	0.732	-7.801	GG02-09-06	104.0	钙质页岩	1.933	-8.508
GG02-03-02	44.0	钙质页岩	0.692	-8.602	GG02-09-07	106.0	钙质页岩	1.812	-8.586
GG02-03-03	44.5	钙质页岩	0.963	-8.788	GG02-09-08	108.0	钙质页岩	1.610	-8.795
GG02-03-04	45.0	钙质页岩	0.707	-8.703	GG02-10-01	109.0	微晶灰岩	2.295	-8.980
GG02-03-05	45.5	钙质页岩	0.660	-8.422	GG02-10-01'	110.0	页岩	2.676	-7.687
GG02-03-06	46.0	钙质页岩	0.796	-8.786	GG02-10-02	112.0	钙质页岩	1.377	-8.788
GG02-03-07	46.5	钙质页岩	0.738	-8.909	GG02-10-03	114.0	钙质页岩	1.836	-10.298
GG02-03-08	46.8	泥灰岩	0.572	-8.411	GG02-10-04	116.0	钙质页岩	0.857	-10.220
GG02-03-09	47.0	钙质页岩	0.801	-8.676	GG02-10-05	118.0	钙质页岩	1.290	-9.400
GG02-03-10	48.0	钙质页岩	0.903	-9.705	GG02-10-06	120.0	钙质页岩	1.929	-9.499
GG02-03-11	49.0	钙质页岩	0.537	-9.482	GG02-10-07	122.0	钙质页岩	1.182	-8.549
GG02-03-12	50.0	钙质页岩	0.372	-8.779	GG02-10-08	124.0	钙质页岩	2.198	-11.704
GG02-03-13	51.0	钙质页岩	1.352	-9.495	GG02-10-09	126.0	钙质页岩	0.663	-9.213
GG02-03-14	52.0	钙质页岩	1.237	-10.365	GG02-10-10	128.0	钙质页岩	0.563	-8.966
GG02-03-15	53.0	钙质页岩	2.407	-9.893	GG02-10-12	132.0	钙质页岩	1.634	-13.017
GG02-03-16	54.0	钙质页岩	2.098	-10.338	GG02-11-03	141.0	钙质页岩	1.042	-8.823
GG02-03-17	55.0	钙质页岩	1.199	-9.688	GG02-11-04	143.0	钙质页岩	1.441	-8.742
GG02-03-18	56.0	钙质页岩	1.972	-8.663	GG02-11-05	145.0	钙质页岩	1.153	-7.378
GG02-04-01	57.0	微晶灰岩	2.472	-8.111	GG02-11-06	147.0	钙质页岩	1.444	-7.506
GG02-04-02	58.5	微晶灰岩	2.494	-8.463	GG02-12-01	149.0	页岩	1.384	-7.974
GG02-04-03	60.0	微晶灰岩	2.386	-8.062	GG02-12-02	151.0	钙质页岩	1.201	-9.022
GG02-05-04	66.0	钙质页岩	3.273	-10.896	GG02-12-03	153.0	钙质页岩	1.238	-8.529
GG02-05-05	68.0	钙质页岩	2.954	-9.564	GG02-12-04	155.0	钙质页岩	1.108	-7.960
GG02-05-06	70.0	钙质页岩	2.963	-9.386	GG02-12-05	157.0	钙质页岩	0.759	-6.425
GG02-06-01	72.0	钙质页岩	2.451	-9.549	GG02-12-05'	158.0	微晶灰岩	0.729	-6.457
GG02-06-02	74.0	钙质页岩	2.033	-9.214	GG02-12-06	159.0	微晶灰岩	1.464	-7.418

eli 带和 R. cushmani 带的中下部变化相对稳定,只 是在剖面 5 m、12~17 m、28~29 m、32~33 m 有小 幅度的偏移,偏移幅度小于 0.7×10⁻³ PDB. 从 R. cushmani 带上部(剖面 40 m)开始, δ^{13} C 值大幅度正 偏,在 W. archaeocretacea 带底部(剖面 46 m)形成 高峰值,幅度差值达 2.000×10⁻³ PDB,并持续正偏 到 W. archaeocretacea 带顶部(剖面 59 m)形成了 正偏"高原". 其后, δ^{13} C 值持续稳定负偏,在 Turonian 阶 H. helvetica 带中部、H. helvetica 带与M. sigali 带之间产生 2 个相对明显的负偏凹陷区,其 间构成 1 个中幅的正偏隆起区.到 Turonian 阶上部 M. sigali 带为 1 个低幅持续缓慢的正偏区.氧同位 素比值(δ^{18} O 值)与 δ^{13} C 值相比,曲线效果较差,总 体呈现长期模糊镜像正偏趋势.

在岗巴宗山剖面,按照浮游有孔虫化石带的定 年方案, Cenomanian 阶上部 R. cushmani 带和 W. archaeocretacea 带下部 δ^{13} C 值基本没有变化, 保持在 1.000×10⁻³ PDB 左右;到了 CTB 才有 1 个 小幅的正偏(最大值 1.600×10⁻³ PDB).之后,在 W. archaeocretacea 带中上部显示为负偏过程,到 了 W. archaeocretacea 带顶部、50~60 m 范围内为 快速的正偏,在 60~70 m 之间也产生了 1 个正偏 "高原". 由此向上, δ^{13} C 值在 Turonian 阶中上部总 体也反映为持续负偏,并在 *M. sigali* 带中部有 2 个相对明显的负偏凹陷区和 1 个中幅的正偏隆起 区.该剖面的 δ^{18} O 总体显示 1 个正偏趋势,与 δ^{13} C 呈现不十分明显的镜像关系,但偏移过程不能—— 对应,只是在 *M. sigali* 带中部 2 个负偏凹陷区和 1 个正偏区二者相似.

4 讨论与结论

4.1 偏移曲线的对比

无论是定日贡扎剖面还是岗巴宗山剖面,Cenomanian 中晚期 ∂¹³C 值相对稳定,末期快速正偏,在 达到最大值并持续一段时间后,整个 Turonian 期总 体表现为持续负偏(图 2).这个相当于二级旋回的 长期变化趋势与特提斯甚至全球其他地区的表现十 分相似,也与 Haq et al. (1987)曲线海平面变化趋势相似.这反映,西藏南部特提斯喜马拉雅地区在 Cenomanian-Turonian 时期海洋的 ∂¹³C 值长期偏移 趋势与全球其他地区的变化基本保持一致.

另一方面, Turonian 中后期 δ^{13} C 可以识别出 2 个中幅负偏凹陷区,与来自欧洲中西部的相关资料 (Stoll and Schrag, 2000; Voigt and Wiese, 2000; Wiese and Voigt, 2002)在偏移时间和幅度方面存 在惊人的相似(图 4),甚至这种情形在岗巴宗山剖 面 δ^{18} O 值曲线上也可以看到影子(图 3).近期研究 成果表明, Turonian 晚期 δ^{13} C 较为强烈的负偏除了 与同期大区域甚至全球海平面下降有关外,还可能 与全球短期 气候 变冷存在一定联系 (Stoll and Schrag, 2000; Wiese and Voigt, 2002).鉴于这种 良好的对比性,结合高分辨率 δ^{13} C 曲线可以作为全 球对比的 有效工具 (Scholle and Arthur, 1980; Jenkyns *et al.*, 1994),笔者认为,西藏南部特提斯 喜马拉雅在 Turonian 晚期受到全球气候的影响,可 能存在短期气候变冷的过程.

4.2 **δ**¹³C 偏移曲线的地层意义

虽然定日和岗巴地区在 Cenomanian-Turonian 期 ∂¹³C 值长期变化趋势和 Turonian 中期短期波动 与欧洲等有关地区具有可对比性;但是,仔细分辨不

图 4 Cenomanian-Turonian 期全球碳同位素偏移平滑曲线对比

Fig. 4 Global correlation of the smoothed δ^{13} C value curves in the Cenomanian-Turonian

最左侧综合曲线为时间比例尺的综合曲线,其他为厚度比例尺的平滑曲线. 粗点线为 Turonian 中期、Turonian 中一晚期界线碳同位素负偏 事件对比线. 岗巴剖面虚线是依据碳同位素偏移曲线推荐的 CTB. ∂¹³C 的单位为 10⁻³PDB 第3期

难发现岗巴宗山剖面 δ^{13} C 值在偏移步调上存在 2 处不协调:一是 δ^{13} C 值最大正偏没有出现在 Cenomanian 阶顶部, 而是发生在 Turonian 阶下部 W. *archaeocretacea* 带顶部与 H. *helvetica* 带下部过渡 带;二是 Turonian 中后期 δ^{13} C 的 2 个负偏区不是 出现在 H. *helvetica* 带中上部, 而是在 M. *sigali* 带中部(图 3). 导致这一结果的可能原因是岩相差 异或生物地层定位偏差. 尽管岗巴地区和定日地区 岩相有一定不同; 但是, 它们都处于印度大陆北部边 缘陆棚地带, 与北部的特提斯洋开阔相连, 海水碳同 位素值的背景值应该相同.

这样看来,生物地层的定位准确与否可能是影 响岗巴宗山剖面碳同位素偏移步调的主要原因.不 仅碳同位素如此,同一剖面的⁸⁷ Sr/⁸⁶ Sr 比值偏移过 程也显示了锶同位素地层与生物地层的不协调, 即⁸⁷ Sr/⁸⁶ Sr 比值最大负偏波谷不在 Turonian 阶上 部,而在 Santonian 阶上部(石和等,2005).鉴于碳、 锶稳定同位素与生物地层的不协调,考虑定日贡扎 剖面的 δ^{13} C 值在 Cenomanian-Turonian 期偏移幅 度和步调与西特提斯、北大西洋相似,加之,高分辨 率碳同位素偏移趋势可以作为全球对比有效工具, 因此,笔者建议用碳同位素偏移曲线来对生物地层 作适当校正,即:将岗巴剖面的 CTB 放在 δ^{13} C 值最 大正偏结束位置(71 m,样品 02GG-05-06 与 02GG-06-01 之间);将 Turonian 中后期的 2 个负偏区置于 *H. helvetica* 带中部和顶部(图 3 和图 4).

4.3 CTB 黑色页岩问题

伴随全球碳旋回的快速变化(Bralower *et al.*, 1994; Erba, 1994; Erbacher and Thurow, 1997), 除了生物绝灭和 δ^{13} C 极度正偏事件外,CTB 一个重要标志就是富含有机质的黑色页岩在全球深海地区大量出现.在西藏南部半远洋的岗巴定日地区,CTB 生物绝灭(Wan *et al.*, 2003b)和 δ^{13} C 极度正偏事件(本文)已经识别;但令人疑惑的是,富含有机质的

我们知道,随着早白垩世原大西洋的打开,大洋 环流将大西洋和太平洋联系起来的特提斯西窄东 宽;因此,理论上 CTB 时期的 OAE2 首先影响的是 东特提斯而不是西特提斯.西特提斯大量有机质页 岩的出现、东特提斯南北两侧无典型的富含有机质 黑色页岩说明,OAE2 在东特提斯(包括特提斯喜马 拉雅北亚带江孜一羊卓雍湖地区斜坡相)没能形成 特色的富含有机质黑色页岩记录.无论是露头还未 达到黑色页岩形成环境要求的深度,还是 OAE 能 否解释这种现象,结果都是近海/海山浅海(Hilbrecht *et al.*, 1996; Davey and Jenkyns, 1999; Jenkyns and Wilson, 1999; Wiese, 1999)、半远洋环境(Jenkyns *et al.*, 1994) δ^{I3} C 值 CTB 正偏层位不发育黑色页岩. 这 就表明, δ^{I3} C 值 CTB 的正偏与大洋缺氧事件产物黑 色页岩并不一定是一一对应关系.

4.4 岗巴样品的成岩改造印记

计算表 1 和表 2 可以看出,定日贡扎剖面的 δ^{13} C 和 δ^{18} O 总平均值分别为 2. 311×10⁻³、-5. 958× 10⁻³ PDB,岗巴宗山剖面则分别为1. 470×10⁻³ 和-9. 061×10⁻³ PDB. 前者接近于欧洲和 DSDP/ODP 同 期的碳氧同位素均值(Tsikos *et al.*, 2004),后者相差 较大,总体明显负偏. 这种情况还出现在近期发表的 西藏南部 CTB 的 δ^{13} C 和 δ^{18} O 数据(Wang *et al.*, 2001; Wan *et al.*, 2003a, 2003b)中.

造成岗巴宗山样品总体负偏的可能原因为有机 碳埋藏速率、实验偏差/成岩改造. 西藏南部上白垩 统的有机碳普遍较低,一般小于 1.0%(Wang et al.,2001),极个别达到 1.6%,因此,有机碳埋藏速 率从表现结果来看对碳同位素比值不会有太大的影 响;测试分析的仪器引起实验偏差的影响可能较小, 因为样品制作过程严格按规范进行;相反,可能影响 的是样品制备过程,这是因为手工碎样研磨的粉末 较难避免微裂隙和/或小型生物扰动组构,这即是 说,样品制备过程中可能部分样品未能去除(手工选 样也难以去除)微裂隙型方解石脉和小型生物扰动 的影响.从采集的大部分样品薄片和阴极发光观察 表明,岗巴宗山剖面的样品较之定日剖面同类岩性 受到成岩作用改造的程度更高.

致谢:Kuhnt,W. 和万晓樵教授帮助了定日的 有孔虫化石鉴定和时代定位,Luba,J. 参加了部分 定日野外采样工作,Sarti,M. 对定日野外工作提供 了部分支持;万晓樵教授还提供了岗巴的化石带资 料,万晓樵、邹艳如、黄永建、沈立成参加了岗巴剖面 野外采样工作;陈曦参加了定日贡扎剖面样品采集 工作,石和、赵鹏肖、陈曦、魏玉帅、黄永建、赵兵等参 加了定日剖面室内化石分析和样品整理工作.在此 一并表示谢忱.

References

Arthur, M. A., Premoli-Silva, I., 1982. Development of widespread organic carbon-rich strata in the Mediterranean Tethys. In: Schlanger, S. O., Cita, M. B., eds., Nature and origin of Cretaceous carbon-rich facies. Academic Press, London, 1–54.

- Bralower, T. J., 1988. Cenomanian-Turonian oceanic anoxic event; local perturbations on a global theme. AAPG Bulletin, 72(2):165-166.
- Bralower, T. J., Arthur, M. A., Leckie, R. M., et al., 1994. Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian. *Palaio*, 9:335-369.
- Crumiere, J. P., 1988. Paleo-oceanographic controls of a source rock (Thomel level) deposition; anoxic event around the Cenomanian-Turonian boundary in southeastern France. In: Mediterranean basins conference and exhibition. AAPG Bulletin, 72(8):1966-1988.
- Davey, S. D., Jenkyns, H. C., 1999. Carbon-isotope stratigraphy of shallow-water limestones and implications for the timing of Late Cretaceous sea-level rise and anoxic (Cenomanian-Turonian of the peri-Adriatic carbonate platform, Croatia). *Eclogae Geol. Helv.*, 92,163-170.
- Erba, E., 1994. Nannofossils and superplumes: The early Aptian "nannoconid crisis". *Paleoceanography*, 9: 483 – 501.
- Erbacher, J., Thurow, J., 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. *Marine Micropaleontology*, 30:139-158.
- Gale, A. S., Jenkyns, H. S., Kennedy, W. J., et al., 1993. Chemostratigraphy versus biostratigraphy: Data from around the Cenomanian-Turonian boundary. *Journal of Geology Society of London*, 150:29-32.
- Gradstein, F. M., Ogg, J. G., Smith, A. J., et al., 2004. A new geologic time scale, with special reference to Precambrian and Neogene. *Episodes*, 27(2):83–100.
- Gustafsson, M., Holbourn, A., Kuhnt, W., 2003. Changes in Northeast Atlantic temperature and carbon flux during the Cenomanian/Turonian paleoceanographic event: The Goban Spur stable isotope record. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 201:51-66.
- Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156-1167.
- Hart, M. B., Leary, P. N., 1991. Stepwise mass extinctions: The case for the Late Cenomanian event. *Terra Nova*, 3:142-147.
- Hay, W. W., 1995. Paleoceanography of marine organic-carbon-rich sediments. In: Huc, A. Y., ed., Paleogeogra-

phy, paleoclimate and source rocks. *AAPG Studies in Geology*, 40:21-59.

- Hilbrecht, H., Frieg, C., Tröger, K. A., et al., 1996. Shallow water facies during the Cenomanian-Turonian anoxic event: Bio-events, isotopes, and sea level in southern Germany. *Cretaceous Research*, 17:229-253.
- Jarvis, I., Carson, G., Hart, M., et al., 1988. The Cenomanian-Turonian (Late Cretaceous) anoxic event in SW England: Evidence from the Hooken Cliffs near Beer, SE Devon. Newsletters on Stratigraphy, 18:147-164.
- Jenkyns, H. C., Wilson, P. A., 1999. Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots: Relics from a greenhouse earth. American Journal of Science, 299:341-392.
- Jenkyns, H. C., Gale, A. S., Corfield, R. M., 1994. Carbon and oxygen isotope stratigraphy of the English Chalk and Italian Scaglia and its paleoclimatic significance. *Geological Magazine*, 131:1-34.
- Jenkyns, H. C., 1980. Cretaceous anoxic events: From continents to oceans. J. Goel. Soc. London, 137:171-188.
- Kassab, A. S., Obaidalla, N. A., 2001. Integrated biostratigraphy and inter-regional correlation of the Cenomanian-Turonian deposits of Wadi Feiran, Sinai, Egypt. Cretaceous Research, 22, 105-114.
- Keller, G., Han, Q., Adatte, T., et al., 2001. Palaeoenvironment of the Cenomanian-Turonian transition at Eastbourne, England. *Cretaceous Research*, 22:391-422.
- Leary, P. N., Carson, G. A., Cooper, M. K. E., et al., 1989. The biotic response to the late Cenomanian oceanic anoxic event; integrated evidence from Dover, SE England. J. Geol. Soc. London, 146:311-317.
- Peryt, D., Wyrwicka, K., 1991. The Cenomanian-Turonian oceanic anoxic event in SE Poland. Cretaceous Research, 12(1):65-80.
- Schlanger, S. O., Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events: Cause and consequence. *Geolologie en Mijnbouw*, 55:179-184.
- Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., et al., 1987. The Cenomanian-Turonian oceanic anoxic events, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ¹³ C excursion. In: Brooks, J., Fleet, A. J., eds., Marine petroleum source rocks. *Geological Society Special Publications*, 26:371-399.
- Scholle, P. A., Arthur, M. A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. AAPG Bulletin, 64:67-87.

- Shi, H., Huang, S. J., Shen, L. C., 2005. Late Cretaceous Sr isotope curves in Gamba, Tibet, China and its stratigraphic significance and discussion. *Journal of Stratigraphy*, 29 (1): 28 – 33 (in Chinese with English abstract).
- Stoll, H. M., Schrag, D. P., 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet ?GSA Bulletin, 112(2):308-319.
- Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., et al., 2004. Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian oceanic anoxic event: Correlation and implications based on three key locations. J. Geol. Soc. London, 161:711-719.
- Voigt, S., Hilbrecht, H., 1997. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 134:39-60.
- Voigt, S., Wiese, F., 2000. Evidence for Late Cretaceous (Late Turonian) climate cooling from oxygen-isotope variations and palaeogeographic changes in western and central Europe, J. Geol. Soc. London, 157:737-743.
- Voigt, S., 2000. Cenomanian-Turonian composite δ¹³ C curve for western and central Europe: The role of organic and inorganic carbon fluxes. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 160:91-104.
- Wan, X. Q., Wei, M. R., Li, G. B., 2003a. ∂¹³ C values from the Cenomanian-Turonian passage beds of southern Tibet. Journal of Asian Earth Sciences, 21(8): 861 – 866.
- Wan, X. Q., Wignall, P. B., Zhao, W. J., 2003b. The Cenomanian-Turonian extinction and oceanic anoxic event: Evidence from South Tibet. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 199(3-4):283-298.
- Wang, C. S., Hu, X. M., Jansa, L., et al., 2001. The Cenomanian-Turonian anoxic event in southern Tibet. *Cretaceous Research*, 22:481-490.
- Wang, C. S., Xia, D. X., Zhou, X., et al., 1996. Field trip guide: T121/T387 geology between the Indus-Yarlung

Zangbo suture zone and the Himalaya mountains (Xizang), China. Geological Publishing House, Beijing, 72.

- Wiese, F., 1999. Stable isotope data (δ¹³ C, δ¹⁸ O) from the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Söhlde & Salzgitter-Salder). Newsletters on Stratigraphy, 37:37-62.
- Wiese, F., Voigt, S., 2002. Late Turonian (Cretaceous) climate cooling in Europe: Faunal response and possible causes. *Geobios*, 35:65-77.
- Wilson, A. W., Norris, R. D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. *Nature*, 412:425-429.
- Zhao, W. J., Wan, X. Q., 2001. Recovery of foraminifera from the Late Cretaceous Cenomanian-Turonian mass extinction in Gamba. Acta Palaeontologica Sinica, 40(2):189-194 (in Chinese with English abstract).
- Zhao, W. J., Wan, X. Q., 2003. Palaeoceanographic events near the Cenomanian-Turonian boundary in Tingri, southern Tibet, China. *Chinese Journal of Geology*, 38(2):155-164 (in Chinese with English abstract).
- Zhong, S. L., Zhou, Z. C., Willems, H., et al., 2000. The Middle Cretaceous calcareous nannofossil zones in Gamba area, southern Xizang (Tibet), China and the Cenomanian-Turonian boundary. Acta Palaeontologica Sinica, 39(3):313-325.

附中文参考文献

- 石和,黄思静,沈立成,2005. 西藏岗巴晚白垩世锶同位素曲 线的地层学意义及问题讨论. 地层学杂志,29(1):28-33.
- 赵文金,万晓樵,2001. 西藏南部岗巴地区晚白垩世 Cenomanian-Turonian 集群灭绝事件后有孔虫动物群的复苏. 古生物学报,40(2): 189-194.
- **赵文金,**万晓樵,2003. 藏南定日地区 Cenomanian-Turonian **界线附近的生物古海洋事件.** 地质科学,38(2):155-164.