青海省同仁地区上二叠统石关组上部火山岩的 新发现及其地球化学特征和构造环境意义

寇晓虎^{1,2},朱云海¹,张克信^{1,2},施 彬¹,罗根明¹

1. 中国地质大学地球科学学院,湖北武汉 430074

2. 中国地质大学地质过程与矿产资源国家重点实验室,湖北武汉 430074

摘要:青海省同仁地区位于秦、祁结合部,构造演化历史悠久.在该区隆务河两侧广泛发育着二叠、三叠纪地层,通过两套地 层岩石组合分析,我们认为晚二叠世晚期至早三叠世早期该区属于半深海浊积扇相沉积环境.在该区晚二叠世晚期地层中 新发现一套火山岩,火山岩的岩石组合主要为玄武岩、安山岩、玄武安山岩等.根据岩石的常量元素特征,可以将本区火山 岩分为两部分:下部岩石的 SiO₂ 含量为 49.04%~52.43%,平均为 51.28%,TiO₂ 含量为 0.67%~1.11%,平均为 0.9%, ALK 值为 2.64%~3.6%.通过常量元素投点图分析,本组火山岩岩性偏基性,属于拉斑玄武岩系列,显示高钛玄武岩特 征.上部岩石的 SiO₂ 含量为 56.25%~60.36%,平均为 58.76%,TiO₂ 含量为 0.52%~0.63%,平均为 0.58%,ALK 值在 5.26%~5.54%之间.岩性偏中性,属于钙碱性系列,显示低钛玄武岩特征.火山岩的稀土元素也有明显差异,下部稀土总 量较低, Σ REE=(61.7~97.17)×10⁻⁶,(La/Lu)_N 比值平均为 3.07,轻重稀土分馏不明显,显示与过渡型洋中脊玄武岩相 似的特征;而上部稀土总量较高, Σ REE=(107.51~143.32)×10⁻⁶,(La/Lu)_N 比值平均为 7.78,轻重稀土分馏明显,稀土 分配曲线显示与岛弧安山岩相似的特征.该区火山岩的微量元素比值蛛网图显示与岛弧钙碱性玄武岩一过渡类型玄武岩 具有较强的相似性.构造环境判别显示出本区火山岩具有从拉张的过渡型洋中脊环境到闭合的岛弧环境的演化特征. 关键词:地球化学;火山岩;石关组;上二叠统;西秦岭.

中图分类号: P588.1; P59 **文章编号:** 1000-2383(2007)01-0045-06 **收稿日期:** 2006-06-11

Discovery and Geochemistry of Upper Permian Volcanic Rocks in Tongren Area, Qinghai Province and Their Tectonic Significance

KOU Xiao-hu^{1,2}, ZHU Yun-hai¹, ZHANG Ke-xin^{1,2}, SHI Bin¹, LUO Gen-ming¹

 $1. \ Faculty of \ Earth \ Sciences \ , \ China \ University \ of \ Geosciences \ , \ Wuhan \ \ 430074 \ , \ China$

 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

Abstract: Tongren area is located in the lower reaches of the Longwuhe River, east of Qinghai Province, which is between the West Qinling and South Qilian orogenic belts. Along the two sides of Longwuhe River broadly develops stratum in Permian and Triassic. Through the analysis of rock assemblages, this area is determined to be turbidite fan facies of hemipelagic from the end of Late Permian to the beginning of Early Triassic. Through the geological research, we found volcanic rocks in the Shiguan Formation of Upper Permian. The volcanic rock assemblage is mainly composed of basalts, basaltic andesites and andesites. According to the characteristics of the ordinary elements, the volcanic rocks can be divided into two parts. The lower part: SiO₂ content is 49.04% -52.43%, with the average of 51.28%; the TiO₂ content is 0.67% -1.11%, with the average of 0.9%; and the ALK value is 2.64% -3.6%. The rock type is mainly tholeiitic basalt series, with high titanium quantity. The upper part: SiO₂ content is 56.25% -60.36%, the average being 58.76%; The TiO₂ content is 0.52% -0.63%, the average being 0.58%; the ALK value is 5.26% -5.54%. The rock type is calc-alkaline series with

low titanium quantity. REE distribution patterns of the volcanic rocks are different. The lower part has lower REE, with $(La/Lu)_N$ average being 3.07, and its distribution patterns are consistent with those of transitional mid-oceanic ridge basalt. REE is rich in the upper part, especially the LREE. And its distribution patterns are similar to those of island arc andesite. The trace elements have the same characteristics, the distribution type of which is something like that of island arc basalt rock. Tectonic setting distinction reveals that the volcanic rocks of this area were formed in transitional mid-oceanic ridge basalt to island arc tectonic setting.

Key words: geochemistry; volcanic rocks; Shiguan Formation; Upper Permian; West Qinling.

研究区位于青海省同仁县以北、尖扎县以南的 隆务河中下游地区.在大地构造位置上,研究区位于 西秦岭和南祁连两大构造单元的结合部,构造演化 非常复杂,近年来,对于秦、祁、昆结合部的研究取得 了许多重要的研究成果,目前倾向于认为秦、祁、昆 结合部是一个具有复杂洋陆演化历史的复合型造山 带(殷鸿福和张克信,1998;朱云海等,1999; Zhang et al., 2000:张克信等, 2004).该造山带是由一系 列微板块与许多小洋盆组成的多岛小洋盆,具有软 碰撞和多旋回的特点(殷鸿福和张克信,1998; Yin et al., 2004). 它经历了前原特提斯、原特提斯、古 特提斯等几个演化阶段,在各个演化阶段始终是由 微板块与小洋盆,岛弧与边缘海等组成的不同裂离 与聚合程度的海陆相间的多岛洋盆,海西期秦、祁、 昆存在一系列洋陆转换旋回,布青山一阿尼玛卿山 在晚石炭一早二叠纪拉张形成洋盆,二叠纪末期又 逐渐闭合消亡(Zhang et al., 2000, 2004). 东昆仑 南带石炭纪时拉张形成洋盆,直到海西期末洋盆逐 渐闭合消亡,该地蛇绿岩中玄武岩的地球化学分析 显示了岛弧边缘海的构造环境(殷鸿福和张克信,

1997). 与布青山一阿尼玛卿洋形成时期相吻合的是 在兴海一赛什塘也存在一海西期的分支洋,蛇绿岩 的地质、地球化学特征表明该分支洋为发育不成熟 的小洋盆,形成于弧后盆地或边缘海等构造环境(张 智勇等,2004). 本文研究区位于若尔盖地块和南祁 连地块交界处的青海南山断裂带(图 1),是一条海 西期的缝合带. 该地区火山岩的研究对于研究秦、 祁、昆结合部的构造演化、对比等提供了新资料和地 质依据.

研究区地层主要有二叠纪大关山组、石关组和 三叠纪隆务河群的果木沟组、江里沟组以及古浪堤 组. 2005年中国地质大学(武汉)地调院在该地区进 行了详细的地质调查工作,通过对该区上二叠统石 关组和下三叠统果木沟组进行实测剖面研究,根据 沉积序列、岩石组合等对当时的沉积环境进行了分 析. 石关组的岩性组合主要为硅质灰岩、条带状灰 岩、泥质灰岩等,果木沟组岩性组合主要是一套具鲍 玛序列的长石石英砂岩、钙质板岩组合,反映了当时 的沉积环境为半深海浊积相. 在对地层研究的基础 上,我们发现在上二叠统石关组上部存在一套火山

图 1 研究区大地构造位置 Fig. 1 Tectonic location of the research area

		Table 1 Chemical analysis results of Permian volcanic rocks in Tongren area														
样品号	岩性	SiO_2	${\rm TiO}_2$	Al_2O_3	MgO	MnO	$\mathrm{Fe}_2\mathrm{O}_3$	FeO	CaO	Na_2O	K_2O	P_2O_5	$\mathrm{H_{2}O^{+}}$	CO_2	Σ	
110a-1	玄武安山岩	56.25	0.60	17.86	1.96	0.11	0.73	5.32	4.76	3.15	2.39	0.17	3.20	3.16	99.66	
110a-2	安山岩	60.36	0.63	15.88	3.21	0.11	0.82	4.65	4.09	3.37	2.02	0.14	2.99	1.47	99.74	
110c - 1	安山岩	59.68	0.52	14.87	3.94	0.10	0.95	3.98	5.87	3.24	2.02	0.12	2.51	1.96	99.76	
110e - 1	玄武岩	51.60	1.09	14.01	7.73	0.17	2.08	6.78	7.50	2.83	0.52	0.19	3.77	1.47	99.74	
$110e{-2}$	玄武安山岩	52.04	1.11	14.19	7.70	0.16	1.80	6.88	7.32	2.66	0.94	0.19	3.69	0.98	99.66	
114 - 1	玄武岩	49.04	0.73	14.08	8.74	0.17	2.44	5.48	7.53	2.47	0.17	0.10	5.19	3.59	99.73	
118 - 1	玄武安山岩	52.43	0.67	13.83	8.54	0.15	1.54	6.48	9.02	2.17	0.91	0.07	3.10	0.82	99.73	

表1 同仁地区二叠纪火山岩化学分析结果(%)

测试单位:湖北省地质实验研究所.

图 2 青海省同仁地区上二叠统石关组(P₃s)实测剖面图

Fig. 2 Section of Shiguan Formation of Upper Permian in Tongren area, Qinghai Province

1. 长石石英砂岩; 2. 泥质灰岩; 3. 硅质灰岩; 4. 玄武岩; 5. 安山岩;
6. 玄武安山岩; 7. 钙质板岩

图 3 ∑FeO/(∑FeO+MgO)−TiO₂ 图(Serri *et al.*, 1985) Fig. 3 ∑FeO/(∑FeO+MgO)-TiO₂ diagram HT. 高钛玄武岩; LT. 低钛玄武岩

岩(图 2),前人未对该套火山岩进行过报道.本文对 该套火山岩进行了地球化学研究,以期探讨该区构 造环境以及岩浆演化特征.

1 岩石化学特征

对青海省同仁地区二叠纪火山岩进行全岩化学 分析(表 1),从表中可以看出 H₂O,CO₂ 的含量较高, 这可能与火山岩中的气孔杏仁构造较为发育有关.

- 图 4 同仁地区上二叠统顶部的火山岩 AFM 图(Irvine and Barger, 1971,图例同图 3)
- Fig. 4 AFM diagram of Upper Permian volcanic rocks in Tongren area

T. 拉斑玄武岩系列;C. 钙碱性系列

该区火山岩的岩石类型主要为玄武岩、玄武安 山岩、安山岩等(Le Bas et al., 1986). 根据常量元 素特征,我们可以将本区火山岩从下到上分为两部 分,其中下部岩石 SiO₂ 含量从 49.04%~52.43%, 平均为 51. 28%, TiO2 含量较高,从 0. 67% ~ 1.11%,平均为 0.9%,在∑FeO/(∑FeO+MgO)- TiO_2 图中(图 3)投点主要落在高钛玄武岩区,反映 岩浆可能来源于拉张环境的低压岩浆房:上部岩石 SiO₂ 含量从 56.25%~60.36%,平均为 58.76%, TiO_2 的含量在 0. 52% ~ 0. 63% 之间,平均为 0.58%,在 Σ FeO/(Σ FeO+MgO)-TiO₂ 图中投 点主要落在低钛玄武岩区,反映岩浆可能来源于挤 压环境或俯冲环境的高压岩浆房. 下部岩石的 ALK 的含量为2.64%~3.35%,平均为3.17%,上部岩 石 ALK 含量为 5.26%~5.54%,平均为 5.4%,均 属于亚碱性玄武岩,在区分拉斑玄武岩系列和钙碱 性系列的 AFM 图中(图 4),下部火山岩属于拉斑玄 武岩系列,上部火山岩属于钙碱性玄武岩系列,而一 般在洋中脊环境(拉张环境)下形成的多为拉斑玄武

表 2 同仁地区二叠纪火山岩稀土元素分析结果(10⁻⁻⁶)及球粒陨石标准化值

Table 2 Analysis results of REE and meteorite standardize of Permian volcanic rocks in Tongren area

样品号	岩性	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Υ
110a-1	玄武安山岩	26.83	50.46	6.15	23.33	4.38	1.26	4.02	0.67	3.76	0.75	2.08	0.34	2.05	0.33	16.91
110a-2	安山岩	22.54	41.37	4.83	18.35	3.74	1.04	3.63	0.59	3.41	0.69	1.83	0.30	1.78	0.29	18.72
110c-1	安山岩	18.42	33.54	4.03	14.73	3.00	0.86	2.93	0.48	2.95	0.61	1.67	0.28	1.72	0.28	22.01
110e-1	玄武安山岩	12.61	25.84	3.56	15.73	3.77	1.11	4.11	0.69	4.26	0.84	2.41	0.39	2.27	0.36	16.56
110e-2	玄武安山岩	12.69	25.91	3.42	15.69	3.69	1.08	4.18	0.71	4.34	0.88	2.42	0.39	2.30	0.38	19.09
114 - 1	玄武岩	6.82	14.14	2.07	9.04	2.35	0.77	2.71	0.47	2.99	0.62	1.74	0.26	1.67	0.27	15.78
118 - 1	玄武安山岩	6.21	13.18	1.88	8.12	2.18	0.72	2.56	0.46	2.83	0.59	1.60	0.27	1.63	0.25	14.90
球粒陨石材	标准化值															
110a-1	玄武安山岩	73.11	52.73	44.89	32.81	18.96	14.48	13.14	11.55	9.87	8.81	8.35	9.55	8.27	8.66	8.48
110a-2	安山岩	61.42	43.23	35.26	25.81	16.19	11.95	11.86	10.17	8.95	8.11	7.35	8.43	7.18	7.61	7.76
110c-1	安山岩	50.19	35.05	29.42	20.72	12.99	9.89	9.58	8.28	7.74	7.17	6.71	7.87	6.94	7.35	6.80
110e-1	玄武安山岩	34.36	27.00	25.99	22.12	16.32	12.76	13.43	11.90	11.18	9.87	9.68	10.96	9.15	9.45	9.53
110e - 2	玄武安山岩	34.58	27.07	24.96	22.07	15.97	12.41	13.66	12.24	11.39	10.34	9.72	10.96	9.27	9.97	10.47
114 - 1	玄武岩	18.58	14.78	15.11	12.71	10.17	8.85	8.86	8.10	7.85	7.29	6.99	7.30	6.73	7.09	7.01
118-1	玄武安山岩	16.92	13.77	13.72	11.42	9.44	8.28	8.37	7.93	7.43	6.93	6.43	7.58	6.57	6.56	6.62

测试单位:湖北省地质实验研究所,球粒陨石标准化值据 Taylor and McLennan(1985).

图 5 同仁地区上二叠统顶部的火山岩稀土元素分配曲线 (图例同图 3)

Fig. 5 REE distribution patterns of Upper Permian volcanic rocks in Tongren area

岩,在挤压环境下形成的多为钙碱性玄武岩系列.说 明该区下部火山岩形成于拉张环境的低压岩浆房, 上部火山岩形成于挤压碰撞环境的高压岩浆房.

2 稀土元素特征

对青海省同仁地区二叠纪火山岩进行稀土元素 分析,并对分析结果进行球粒陨石标准化处理(表 2). 从表中可以看出,该区火山岩稀土元素总量较高, \sum REE=(57.8~143.3)×10⁻⁶,平均为97.81×10⁻⁶, LREE=(32.29~112.41)×10⁻⁶,平均为67.35× 10⁻⁶,HREE=(10.19~15.6)×10⁻⁶,平均为12.76× 10⁻⁶,LREE/HREE=3.17~8.03,平均为5.25,(La/Lu)_N=2.58~8.44,平均为5.09.总体上该区火山岩

轻重稀土分馏明显,其稀土分配曲线表现为轻稀土富 集而重稀土较为平坦的右倾型,在配分曲线上(图5), 我们同样可以将其分为两部分,下部 Σ REE = (61.7~97.17)×10⁻⁶,平均为 77.69×10⁻⁶,LREE= $(32. 29 \sim 62. 62) \times 10^{-6}$,平均为 48. 15×10^{-6} , HREE=(10.19~15.6)×10⁻⁶,平均为12.96×10⁻⁶. LREE/HREE = 3. 17 ~ 4. 08. $(La/Lu)_N = 2.58 \sim$ 3.63,平均为 3.07.该组轻重稀土无明显分馏,稀土配 分曲线为略右倾型,其稀土配分曲线与过渡型(T-型) 洋中脊玄武岩具有很大的相似性(Le Roex et al., 1983). 上部∑REE=(107.51~143.32)×10⁻⁶,平均 为124.65×10⁻⁶,LREE=(74.58~112.41)×10⁻⁶,平 均为 92.95×10⁻⁶, HREE=(10.92~14)×10⁻⁶, 平 均为 12. 486×10^{-6} , LREE/HREE = 6. $83 \sim 8$. 03. (La/Lu)_N=6.83~8.44,平均为7.78.该组火山岩轻 重稀土分馏明显,稀土配分曲线为明显右倾型,与岛 Graf, 1984).

3 微量元素特征

青海省同仁地区隆务河流域二叠纪火山岩微量 元素分析结果及 MORB标准化值见表 3,其 MORB 值标准化后的比值蛛网图见图 6. 从表 3 中可以看 出,该区火山岩的大离子亲石元素(Rb、Ba、Th等) 均较富集. 活动性不强的高场强元素(如 Nb、Ta、 Zr、Hf等)接近于MORB,在配分曲线上较平坦. 总

表 3 同仁地区二叠纪火山岩微量元素分析结果(10⁻⁶)及 MORB 标准化值

Table 3 Analysis results of trace elements and MORB standardize of Permian volcanic rocks in Tongren area

样品号	岩性	V	Zn	Со	Ni	Cu	Cr	Sr	Rb	Hf	Zr	Nb	Th	Pb	Ta	Ba
110a-1	玄武安山岩	52.4	80	13.8	5.84	13	5.9	$1\ 298$	105	3.4	174	8.09	5.35	15.2	0.48	489
110a-2	安山岩	80.7	65.9	17.9	27.7	15.1	90.5	386	68.1	4.1	152	12.7	7.85	15.1	1.06	491
110c-1	安山岩	78.8	42.2	19.7	49.9	11.6	206	392	70.4	3.4	141	5.74	7.79	8.7	0.57	415
110e - 1	玄武安山岩	177	83.3	40.1	93.1	90.3	378	461	18.2	3.3	140	6.27	3.92	7.6	0.5	388
110e-2	玄武安山岩	179	77.3	40.8	87.1	104	345	561	31.5	3.8	141	6.4	3.94	8.5	0.49	938
114 - 1	玄武岩	155	66.4	40.7	136	73.9	548	591	6	2.1	82.1	2.53	1.98	5.1	0.24	165
118 - 1	玄武安山岩	173	67	43.8	75.1	58.2	418	450	24	2	71.4	2.27	2.07	7.3	0.21	394
MORB 标	准化值															
样品号	岩石名称	Sr	$\mathrm{K}_2\mathrm{O}$	Rb	Ba	Th	Ta	NI	b C	Ce P	$_2O_5$	Zr	Hf	Sm	Y	Yb
110a-1	玄武安山岩	10.82	15.93	52.50	24.45	26.75	2.67	2.3	B1 5.	27 1	. 42	1.93	1.42	5.75	0.28	2.43
110a-2	安山岩	3.22	13.47	34.05	24.55	39.25	5.89	3.6	53 4 .	32 1	. 17	1.69	1.71	4.91	0.26	2.11
110c - 1	安山岩	3.27	13.47	35.20	20.75	38.95	3.17	1.6	54 3 .	50 1	. 00	1.57	1.42	3.94	0.23	2.04
110e - 1	玄武安山岩	3.84	3.47	9.10	19.40	19.60	2.78	1.7	⁷ 9 2.	70 1	. 58	1.56	1.38	4.95	0.32	2.69
110e-2	玄武安山岩	4.68	6.27	15.75	46.90	19.70	2.72	1.8	33 2.	71 1	. 58	1.57	1.58	4.84	0.35	2.73
114 - 1	玄武岩	4.93	1.13	3.00	8.25	9.90	1.33	0.7	2 1.	48 0	. 83	0.91	0.88	3.08	0.23	1.98
118 - 1	玄武安山岩	3.75	6.07	12.00	19.70	10.35	1.17	0.6	65 1 .	38 0	. 58	0.79	0.83	2.86	0.22	1.93

测试单位:湖北省地质实验研究所,MORB标准化值据 Pearce(1983).

同仁地区上二叠统顶部的火山岩微量元素比值蛛网 **冬**6 **图**(图例同图 3)

Fig. 6 Spider diagram of trace elements of Upper Permian volcanic rocks in Tongren area

体上本区火山岩上下两部分的分布型式具有较强的 相似性,说明他们是同源或同演化的一套岩系,在该 区火山岩微量元素比值蛛网图中,上下两部分火山 岩均显示 Rb、Ba、Th 等强烈富集,以及 Ta、Nb、Zr、 Y 等亏损. 在配分曲线上 Ce、Sm 附近存在两个峰 值,Y处明显存在一个"谷".所不同的是下部火山岩 的分布曲线位置偏低,而且在 Ba 附近显示一个峰 值,而在上部则显示一个"谷".总体上该区微量元素 分布曲线与岛弧钙碱性玄武岩一过渡类型玄武岩具 **有较强的相似性**(Pearce, 1982).

构造环境判别 4

根据常量元素特征,本区火山岩可分为高钛的

拉斑玄武岩系列和低钛的钙碱性系列,我们认为本 区火山岩可能形成于两种类型的构造环境. 一种是 类似于洋中脊的板块拉张环境,一种是碰撞挤压的 岛弧环境.本区火山岩的稀土及微量元素配分曲线 进一步说明了该划分的合理性,为了对该区火山岩 形成的构造环境有更进一步的认识,本文利用常量 及微量元素等图解对构造环境进行了判别.

在 $FeO_t - MgO - Al_2O_3$ (图 7a) 判别图中,本区 火山岩投点明显分为两个区,下部火山岩投点落在 3区,即洋中脊火山岩区;上部火山岩投点落在2、1 区. 表现出从洋脊型火山岩逐渐过渡到造山带火山 岩、岛弧火山岩的特征,反映了火山岩形成的构造环 境从拉张环境逐渐过渡到碰撞挤压的岛弧环境,在 $K_2O-TiO_2-P_2O_5$ (图 7b)判别图中,下部火山岩主 要落在大洋拉斑玄武岩区,上部火山岩落在大陆碱 性玄武岩区. 在 FeO* /MgO-TiO₂ (图 7c)判别图 中下部火山岩投点落在 MORB 区,而上部投点主要 落在 IAT 区,综合以上的分析,本文认为该区下部 火山岩形成于板块拉张晚期,上部火山岩形成于洋 壳向下俯冲的岛弧环境。

结论 5

青海省同仁地区位于秦、祁结合部,属于中央造 山带的一部分.本区隆务河两侧上二叠统石关组沉 积主要以硅质灰岩、泥质灰岩为主,下三叠统果木沟

图 7 同仁地区上二叠统顶部的火山岩 FeO_t - MgO - Al₂O₃(a)、K₂O - TiO₂ - P₂O₅(b)、FeO^{*}/MgO - TiO₂(c)构造环境 判别图(图例同图 3)

Fig. 7 FeO₁-MgO-Al₂O₃,K₂O-TiO₂-P₂O₅ and FeO*/MgO-TiO₂ diagram of Upper Permian volcanic rocks in Tongren area a **图**据 Pearce *et al.* (1977);1. 岛弧扩张中心火山岩;2. 造山带火山岩;3. 洋中脊火山岩;4. 洋岛火山岩;5. 大陆火山岩;b **图**据从柏林和张 儒瑗(1983);OTB. 大洋拉斑玄武岩;CTB. 大陆拉斑玄武岩;AB. 碱性玄武岩;c **图**据 Miyashiro(1975);IAT. 岛弧拉斑玄武岩;MORB. 洋中 脊玄武岩;OIB. 洋岛玄武岩

组沉积主要为具有鲍玛序列的长石石英砂岩及钙质 板岩组合,反映当时的沉积环境为半深海浊积扇相. 通过岩石化学、地球化学分析,我们将本区火山岩分 为上下两个部分,下部火山岩为低钾、高钛的拉斑玄 武岩系列,反映了其形成于拉张环境的低压岩浆房, 上部火山岩为高钾、低钛的钙碱性系列,反映了其形 成于挤压环境的高压岩浆房.运用构造环境判别图对 本区火山岩进行分析,说明本区火山岩形成环境从似 洋中脊的拉张环境过渡到板块俯冲碰撞的岛弧环境.

References

- Cabanis, B., Lecolle, M., 1989. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimina-tion des series volcaniques el la mise en evidence des processus de melange et/ou de contamination crustale. C. R. Acad. Sci., Ser. II, 309:2023-2029.
- Cong, B. L., Zhang, R. Y., 1983. Cenozoic basaltic rock series in North China and their bearing on tectonic setting. *Geological Review*, 29(1): 40-49 (in Chinese with English abstract).
- Cullers, R. L., Graf, J. L., 1984. Rare earth elements in igneous rocks of the continental crust; predominantly basic and ultrabasic rocks, rare earth element geochemisty. *Elsevier Sic. Pub.*, 2:237-274.
- Irvine, T. N., Barger, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks. *Can.*, *Hearth Sic.*, 523-548.
- Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27:745-750.

Le Roex, A. P., Dick, H. J. B., Brlank, A. M., et al., 1983.

Geo-chemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east. J. Petrol., 24:267-318.

- Miyashiro, A., 1975. Classification characteristics and origin of ophiolites. J. Geol., 83:249-281.
- Pearce, J. A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental basalts and mantle xenoliths. Shiva, Nantwich, 230-249.
- Pearce, J. A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorps, R. S., ed., Andesites, John, Wiley & Sons.
- Pearce, T. H., Gorman, B. E., Birkett, T. C., et al., 1975. The TiO₂-K₂O-P₂O₅ diagram: A method of discriminating between oceanic and nonoceanic basalts. *Earth Planet. Sci. Lett.*, 24:419-426.
- Pearce, T. H., Gorman, B. E., Birkett, T. C., 1977. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. *Earth Planet. Sci. Lett.*, 36:121-132.
- Serri, G., Hebert, R., Hekinian, R., 1985. Chemistry of ultra-mafic tectonices and ultramafic to gabbroic cumulates from the major oceanic basins and the northern Apenines. Ophiolites Ofioliti., 10:63-76.
- Taylor, S. R., McLennan, S. M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford.
- Yin, H. F., Zhang, K. X., 1997. Characteristics of the eastern Kunlun orogenic belt. Earth Science—Journal of China University of Geosciences, 22(4):339—342 (in Chinese with English abstract).