牛庄洼陷"岩性油气藏"油气成因

李素梅^{1,2},印桂强³,姜振学^{1,2},高永进³

1. 中国石油大学石油天然气成藏机理教育部重点实验室,北京 102249

2. 中国石油大学盆地与油藏研究中心,北京 102249

3. 中国石化胜利石油有限公司,山东东营 257015

摘要:为了解析东营凹陷岩性油气藏的成因与成藏机理,采用地球化学途径对岩性油气藏最为发育的牛庄洼陷的原油、不同层位烃源岩进行了详细的烃类化学成分分析与精细油源对比研究.牛庄洼陷以沙三中为主的岩性(含透镜体)及其相关油气藏原油普遍具有低 Pr/Ph 值(<1)、相对较高的甾烷、伽玛蜡烷丰度等沙四上亚段烃源岩的特征.与沙三中烃源岩(Pr/Ph>1)无相关性,与沙三下亚段烃源岩(Pr/Ph>1、伽玛蜡烷含量低)也有明显的非相似性.沙三中亚段的岩性及其相关油气藏油气并非以沙三中为主力烃源岩,而是表现出沙三下特别是沙四上亚段烃源岩的某些特性,暗示以往所确认的透镜体等岩性油气藏极为发育的牛庄洼陷油气成因复杂,油气成藏模式很难用传统的"自生自储"来描述.沙三中岩性油气藏中混合了相隔数百米的沙四段成因油气指示隐蔽油气运移通道的存在.

关键词: 牛庄洼陷; 岩性油藏; 油气成因; 油源对比.

中图分类号: P618.13 文章编号: 1000 - 2383(2007)02 - 0213 - 06

收稿日期: 2006-04-30

Origin of the Subtle Oils in the Niuzhuang Sag

LI Su mei^{1,2}, QIU Gui qiang³, JIA NG Zhen xue^{1,2}, GAO Yong jin³

1. Key Laboratory for Hydrocarbon Accumulation, Ministry of Education, China University of Petroleum, Beijing 102249, China

2. Basin and Reservoir Research Center, China University of Petroleum, Beijing 102249, China

3. Shengli Oilfield Company Limited, SINOPEC, Dongying 257015, China

Abstract Detailed oil oil, oil source rock comparison according to the composition and distribution of hydrocarbons in the Niuzhuang sag was performed to unravel genetics and migration mechanism of the oil. Results indicate that the oils analyzed are characterized by low ratios of Pr/Ph (≤ 1) and relative high concentration of steranes and gammaceranes, which are typi cal features of Es_4 source rocks. No genetic relationship was observed between the oil and the middle interval of Es_3 mud stones characterized by Pr/Ph> 1 and low concentration of gammaceranes, and apparent dissimilarities were also observed be tween the oil and the low interval of Es_3 mudstones. We suggested that the oils are mixed oils derived from the Es_3^L and Es_4 mud stones and there is no possibility of the Es_3^M to be the primary source rock for the oil. The results show that the traditional hydro carbons migration and accumulation model for subtle oil pools especially sandy lens shaped pools featured by short oil migration dis tance with hydrocarbons sourced from surrounding mudstones is unlikely fit for the cases of this study. The mixing of the oils source from the Es_4 with hundreds of meters under the Es_3^M oil pools probably indicates the existence of subtle oil migration pathways. **Key words**, Niuzhuang sag; lithological oil pools oil gas genetic mechanism; oil source rock comparison.

0 引言

牛庄洼陷位于东营凹陷东南部,其北部、西部与

一近弧形的东营中央背斜带边界断裂带相接,南部 与东营凹陷南斜坡的王家岗 – 陈官庄断裂带相邻, 是东营凹陷岩性油气藏最为发育的洼陷之一. 牛庄

基金项目:中国重大基础研究项目(No. G1999043310).

作者简介:李素梅(166),女,副教授,主要从事油气成因与成藏地球化学研究, E mail: smli8888@vahoo.com, cn (1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表1 牛庄油田原油基本地球化学参数

Table 1 Basic geochemical parameters for the oils in the Niuzhuang oilfield

			0		•							0				
井号	层位	埋深 (m)	CPI	OEP	Pr/ Ph	Рг/ <i>n</i> С ₁₇	Ph/ <i>n</i> C ₁₈	205	ββ	C ₂₉ St / C ₃₀ H	G / C ₃₀ H	C ₂₈ Tri / C ₃₀ H	C ₂₄ Tetr C ₂₆ Tri	′4 m / C ₂₉ st	C ₂₉ Ts / C ₃₀ H	SS / LS
牛 20 55	E <i>s</i> ₽	3 013. 4 ~ 3 059	0.93	0.97	0.44	0.98	2.25	0.45	0.47	1.28	0.53	0.026	1.11	0.31	0.123	0.018
河 100X28	Es_2	2 153. 9~2 156. 6	1.01	1.02	0.46	0.76	1.70	0.45	0.47	0.82	0.27	0.023	1.19	0.32	0.114	0.024
河 X171	Es_3	2 841. 9 ~ 3 107. 8	1.00	0.99	0.37	0.75	1.75	0.48	0.49	1.07	0.40	0.032	1.04	0.32	0.116	0.026
河 3 6	Es_2	2 034. 5 ~ 2 060. 7	0.95	0.99	0.41	0.90	2.26	0.49	0.43	1.15	0.36	0.024	1.23	0.31	0.108	0.018
河 169	Es_3^{rp}	3 021. 8 ~ 3 030. 7	1.02	1.01	0.38	0.72	1.66	0.43	0.51	0.86	0.32	0.025	1.25	0.30	0.122	0.026
牛 19	$Es_2 \sim Es_3^{+}$	2 171. 0~3 110. 1	0.95	0.99	0.44	0.93	2.21	0.47	0.47	1.29	0.51	0.029	1.20	0.30	0.133	0.020
万 4 8	E <i>s</i>	-	1.03	1.01	0.41	0.66	1.47	0.46	0.51	0.98	0.36	0.029	1.06	0.32	0.132	0.031
牛 35	E <i>s</i> ₽	2 985. 4 ~ 3 001. 4	1.03	1.04	0.49	0.73	1.56	0.45	0.48	0.71	0.23	0.023	1.28	0.36	0.130	0.020
牛 28	E <i>s</i> ₽	3 190~3 200	1.03	1.02	0.40	0.84	1.98	0.42	0.49	0.95	0.42	0.025	1.18	0.37	0.102	0.020
牛 101	E <i>s</i> ₽	3 279. 3 ~ 3 294. 3	1.06	1.06	0.43	0.81	1.55	0.47	0.47	0.61	0.17	0.024	1.44	0.37	0.132	0.020
牛 25 48	E <i>s</i> ₽	3 284 ~ 3 296. 5	1.05	1.03	0.36	0.96	2.06	0.47	0.47	0.94	0.33	0.027	1.17	0.32	0.144	0.021
牛 41	E <i>s</i> ₽	3 103. 5 ~ 3 255. 6	1.09	1.07	0.60	0.67	1.01	0.47	0.51	0.35	0.12	0.023	1.31	0.47	0.136	0.022
牛 42	E <i>s</i> ₽	3 265. 3	1.05	1.03	0.35	1.48	1.38	0.44	0.53	0.46	0.19	0.024	1.39	0.41	0.163	0.028
牛 24	E <i>s</i> ₽	3 174. 21 ~ 3 182	1.03	1.01	0.38	1.16	1.60	0.45	0.54	0.53	0.20	0.029	1.26	0.40	0.167	0.023
牛 24	E <i>s</i> ₽	3 055 ~ 3 073	1.02	1.03	0.47	0.81	1.53	0.41	0.55	0.56	0.23	0.027	1.17	0.40	0.144	0.027
牛 25 30	E <i>s</i> ₽	3 254 ~ 3 283. 1	1.01	1.01	0.39	0.86	1.98	0.48	0.46	1.02	0.36	0.028	1.20	0.34	0.127	0.020
牛 21	Es_3^{rp}	3 193 ~ 3 206. 9	1.00	1.00	0.45	0.95	1.89	0.49	0.51	1.18	0.41	0.035	0.99	0.35	0.172	0.021
牛 87	Es_3^{rp}	2 928. 37	1.05	1.03	0.34	1.11	1.99	0.44	0.43	0.67	0.22	0.019	1.25	0.61	0.126	0.016
牛 872	Es_3^{rp}	2 922. 7	1.15	1.06	0.35	0.8	1.61	0.52	0.41	0.55	0.17	0.022	1.16	0.39	0.123	0.011
Ξ 3 X11	Es_3^{rp}	2 608. 3 ~ 2 633. 3	1.02	1.05	0.63	0.67	1.15	0.48	0.48	0.64	0.26	0.028	1.07	0.41	0.154	0.025
王 70 13	Es_3^{rp}	2 771. 6~2 773. 5	1.01	1.03	0.59	0.78	1.44	0.50	0.41	0.73	0.23	0.022	1.23	0.37	0.121	0.020
牛 872	E <i>s</i> 芽	3 040. 8 ~ 3 049. 1	1.00	0.92	0.56	0.75	1.50	0.44	0.42	0.50	0.23	0.020	1.24	0.44	0.117	0.017
王 53 2	Es₃F	3 311. 9~3 346. 7	1.04	1.06	0.81	0.49	0.67	0.47	0.53	0.34	0.13	0.028	1.22	0.55	0.180	0.028

注: 20S. C₂₉ 甾烷 ααα 20S/(S+R);β. C₂₉ 甾烷 αβ /(ααα+αββ); C₂₉St /C₃₀ H. C₂₉规则甾烷 /C₃₀ 藿烷; G /₃₀ 藿烷. 伽玛蜡烷 /₃₀ 藿烷; C₂₈ Tri /C₃₀ H. C₂₈ 三环萜 /C₃₀ 藿烷; C₂₄ Tetr /C₂₆ Tri. 2XC₂₄ 四环萜 /C₂₆ 三环萜; 4 m /C₂₉st. 4 甲基甾烷 /C₂₉ 规则甾烷; C₂₉ Ts/C₃₀ H. C₂₉ Ts/ C₃₀ 藿烷; SS/LS. 孕甾烷系列 /C_{27 29} 规则甾烷系列.

油田位于洼陷的近中央部位,主要产油层为沙三中、 下储层,属低渗透油层.该油田是济阳凹陷地质储量 近亿吨级的大型油田(高永进等,2004),已探明地质 储量 8 287万吨.很多学者都将牛庄洼陷作为典型 的岩性油气藏发育区加以研究,内容包含岩性油气 藏的含油气性与主控因素、砂岩透镜体的成藏特征、 主控因素与形成机理等(曾溅辉等,2002,张俊等, 2003;高永进等,2004;李丕龙等,2004).但是,关于 岩性及其相关油气藏的油气成因与运聚方面的分子 地球化学研究较少,相关研究为隐蔽油气藏研究的 重要环节.本文从地球化学角度解析牛庄洼陷油气 特征与成因,为岩性等隐蔽油气藏形成机理的研究 提供进一步的理论依据.

1 样品与实验

采集牛庄油田原油 23 个、王家岗油田原油 10 个、牛庄洼陷-王家岗地区 23 口井的 36 个沙三中、 上及沙四上亚段岩样作常规地球化学分析(表 1). 八面河油田原油(20 个)、烃源岩(8 个)用于对比研 究(Li *et al.*, 2003; Pang *et al.*, 2003).牛 28(C 砂 体)、牛 41(A 砂体)、牛 21(属牛 18 D 砂体)、王 70-13井等为岩性油气藏原油;牛 35 等井多为岩 性-断层油气藏原油.

原油、岩样的氯仿抽提物采用常规柱色谱分离. 在岛津GC 9A 型色谱仪和 Finnigan MAT TSQ 45 型GC /MS 系统上进行饱和烃色谱及饱和烃、芳烃 色谱 – 质谱分析. 分析前加入 D_≠ C₂₉ 甾烷、D_{*} 二苯并 噻吩、 $nC_{24}D_{50}$ 标样. 色谱条件: SE 54 弹性熔硅毛细管 柱(25 m× 0. 25 mm i. d.),以 4 [°]C/min 的速率自 100 [°]C升至 300 [°]C,载气为氦气. 色谱 – 质谱条件: 采 用 SE 54 弹性熔硅毛细管柱(25 m× 0. 25 mm i. d.), 载气为氦气,升温程序: 以 4 [°]C/min 的速率由 100 [°]C 升至 220 [°]C; 再从 220 [°]C以 2 [°]C/min 的速率升温到 300 [°]C. 质谱电离能量 70 eV.

?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2 原油地球化学特征

2.1 宏观地球化学特征

牛庄油田原油具有低密度(0.8523~ 0.8976g·cm⁻³)、低粘度(7.95~86.3 MPa·s)及 低硫(0.26%~0.55%)特征,与邻区王家岗、八面河 油田的高硫特征具有显著差异(Pang *et al.*, 2003).原油饱和烃含量较高(均值57.8%),其次为 芳烃(均值22.1%)、非烃(13.8%),沥青质含量较 低(6.3%).原油饱和烃气相色谱参数CPI、OEP分 别为0.93~1.15、0.97~1.07,多数接近1(表1); 正构烷烃($nC_{21}+nC_{22}$)/($nC_{28}+nC_{29}$)多数分布范围 为1.1~1.89.上述原油物性、族组分与气相色谱特 征反映牛庄原油为正常成熟油.

出乎意料的是,本研究分析的牛庄洼陷 22 个沙 三中为主的原油 Pr /Ph 都小于 1,除个别外,分布范 围一般为 0.34~0.59(均值 0.44)(表 1),该特征与 邻近王家岗、八面河油田源自沙四上段的原油极其 相似,而与沙三段烃源岩(Pr/Ph>1)截然不同(Li et al., 2003; Pang et al., 2003;庞雄奇等, 2004), 反映牛庄油田沙三段原油可能不完全来自沙三段, 该洼陷岩性油气藏成藏模式(张俊等, 2003;高永进 等,2004)有待进一步确认.

2.2 甾、萜类生物标志物特征

牛庄洼陷原油中甾、萜类生物标志物丰富. 原油 中甾类化合物具有相似的组成与分布特征, 主要为 $C_{27} \sim C_{29}$ 规则甾烷, 4 甲基甾烷、重排甾烷也相对发 育,低分子量孕甾烷系列不太发育. 原油 4 甲基甾 烷/C₂₉规则甾烷值高达 0.30 ~ 0.61(表 1), C₂₉ 重 排/C₂₉规则甾烷值为 0.124 ~ 0.297.C₂₇、C₂₈、 C₂₉ ααα 20(R)异构体呈"V"字型, 反映母源岩藻类等 微生物生源的输入. 甾类化合物异构化程度较高, C₂₉ 甾烷 ααα2 OS /(S + R) 值分布范围为 0.42 ~ 0.52, C₂₉ 甾烷 αββ /(αα+ αββ) 值分布范围为 0.41 ~ 0.55, 表明原油以正常成熟油为主.

原油中的萜类化合物主要为五环三萜类 (图1), 三、四环萜类含量相对较低, C²⁸ 三环萜烷/ C³⁰ 藿烷值为0.019~0.035(表1).原油中伽玛蜡 烷相对较为发育,伽玛蜡烷/C³⁰ 藿烷值分布范围为 0.12~0.53(均值0.30).除少数样品外,沙三中、下 亚段烃源岩中伽玛蜡烷总体不太发育(图1)(Li *et al.*,2003; Pang *et al.*,2003; 庞雄奇等,2004),沙 三中烃源岩伽玛蜡烷/C³⁰ 藿烷值多数小于0.05,沙 三上亚段对应值为0.03~0.14.原油中甾烷/藿烷

Cյ₀αβH 牛35,Es [♯] ,2985.4~3001.4 m,原油	СзаβН
C ~ 811 _ 如玛蜡烷	C ₂₉ αβH 牛30, Es ³ , 2 906 m, 灰质泥岩
Тя Тт Тя Тт Та Тт	
牛872,Es [‡] ,3 040.8~3 049.1 m,原油	牛35, Es ⁺ , 2 932.66 m,泥岩
	lhelph_lau_leman
牛24, Es ⁺ , 3 055~3 073 m,原油	牛38,3003.41 m, Es ⁴ , 泥岩
hundress hundress Mondendendesses	halled the and the second secon
牛28,Es ⁺ ,3 190~3 200 m,原油	牛21,3060 m,Es ⁵ ,泥岩
	halle three and a second s
牛21,Es [#] ,3193~3206.9 m,原油	牛24,3128.1 m,Es5, 泥岩
have the the deman and a second	hadre the and a second
河X171, Es, 2841.9~3107.8 m, 原油	牛103, 3 142.97 m, Es3, 页岩
halle there -	hale have not a second
牛87, Es [♯] , 2 928.37 m,油砂	牛872, 3 202.6 m, Es5, 油页岩
hulu Mintener	halu have a
$+101 \text{ E}_{2}^{+}$ 2 270 2 2 2 204 2 - 6 4	王78,3735.07 m, Es5 ,页岩
	. La a Munha Munha as a

图 1 牛庄洼陷部分原油、沙三段烃源岩饱和烃 m/z 191 质量色谱

Fig. 1 m/z 191 mass fragmatograms for the oils and Es₃ rock extracts from the Niuzhuang sag ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 2 牛庄油田及邻区原油及烃源岩的热成熟度对比

Fig. 2 Oil source rock correlation for the Niuzhuang and adjacent oils and source rocks based on maturity parameters

值为 0.32~1.06(均值 0.69),高于沙三中、下烃源 岩(0.23).上述表明,原油与沙三中亚段烃源岩相关 性差,与沙三下亚段相关性亦不甚好.早期研究普遍 认为,牛庄油田原油为"沙三段"型原油(源自沙三段 烃源岩)(张春荣,1989).以上分析再次表明,牛庄油 田油气成因并不简单.

3 油源分析

长期以来,一直认为牛庄洼陷是东营凹陷岩性 油气藏最为发育的洼陷,油气主要为沙三段成因.但 原油烃类组成与分布的剖析表明牛庄油田油气成因 可能较复杂.

牛庄油田多数原油埋深超过 3 000 m, 原油成熟 度相对较高, 反映烃源岩已达到较高的热演化程度. 本研究采集的 2 906 ~3 324 m 沙三中烃源岩具有较 高的 *CPI、OEP* 值, 甾烷异构化参数与原油相关性 较差(图 2). 沙三下烃源岩的热演化特征与沙三中 有一定相似性, 与沙四上亚段差异明显. 埋深 > 2 700 m 的沙四上亚段烃源岩开始接近成熟, 但沙 三下亚段热演化相对滞后, C₂₉ 甾烷 $\alpha\beta\beta/(\alpha\alpha\alpha + \alpha\beta)$ 表现得最为明显(图 2d), 这可能与生源及成烃环境 有关. 与邻近王家岗、八面河原油相比, 牛庄原油成 熟偏高(图 2). 对比 *CPI、OEP* 与甾烷异构化参数, 初步判断本区原油甾烷异构化参数受初次运移分馏 效应的影响较小. 成熟度对比显示, 埋深大于 2700 m的沙四段烃源岩、埋深超过 3 000 m 甚至更 Pr/nCir与 Ph/nCis 相关图显示(图 3a), 牛庄洼 陷、王家岗及八面河油田原油聚类相关,上述原油与 沙四段烃源岩似乎更有亲缘关系.Pr/Ph 与 DPT/P (二苯并噻吩/菲)相关图揭示(图 3b), 牛庄油田原 油与沙四段烃源岩具有无可置疑的成因联系, 而沙 三中、下烃源岩因具有较高的 Pr/Ph 值(>1) 与牛 庄等原油几乎无相关性.以上对比至少表明, 牛庄原 油饱和烃中相当量组分特别是链烷烃主要来自沙四 段烃源岩.

反映烃源岩原始沉积环境的另一重要参数三芴 系列的相对含量进一步显示,沙三中烃源岩非牛庄 油田原油的有效烃源岩,其具有较高的氧芴含量,反 映偏氧化性原始沉积环境.牛庄油田原油与沙四上、 沙三下亚段烃源岩可能有成因联系.

正如前文指出,牛庄原油中检测到相当量的伽 玛蜡烷,除个别岩样外(不排除靠近断层的裂缝运移 烃侵染),沙三中、下烃源岩中该化合物含量甚微(图 1,图 4).沙四上亚段烃源岩中伽玛蜡烷相对含量较 高,特别是埋藏相对浅、成熟度不太高的烃源岩(Li *et al.*,2004;李素梅等,2005).与之相对应,位于牛庄洼 陷南斜坡构造高部位的八面河油田原油具有较高的 伽玛蜡烷含量,伽玛蜡烷/C30 藿烷值为0.656~1.042, 反映一定量未熟-低熟沙四段成因烃类的贡献(Li *et al.*,2003; Pang *et al.*,2003; 庞雄奇等,2004).处于 牛庄洼陷与其斜坡带过渡地带的王家岗油田原油中 伽玛蜡烷丰度变化范围较大,但仍远高于沙三段烃源 岩(图 4b),反映深层沙四段烃源岩的贡献.

2700 mith/2012/2018年、建保超过3000 miter 201 miter 201 miter 2018年。 深的沙兰下程源岩为牛庄原油可能的主力经源岩。 2019年20月20日,在中国中国的主力经源岩。

图 3 牛庄洼陷油 – 岩对比

Fig. 4 Characteristics of the biomarkers in the oils and mudstones in the Niuzhuang sag

参数,图 4a 显示不同成熟度原油及沙四段烃源岩 C₂₉ 甾烷 /C₃₀ 藿烷分布范围较宽,但沙三中、下烃源 岩变化不大,反映甾类化合物的生物先质如藻类微 生物输入不及沙四段.较之于沙四段烃源岩,牛庄原 油中相对较高的甾类化合物表明沙四段烃源岩有所 贡献.此外,2X C₂₊ 四环 /C₂₆ 三环萜烷清楚地反映 牛庄原油与沙四段烃源岩较好的相关性(图 4b).

研究区具有层位标定意义的生物标志物或参数 (如 Pr/Ph等)几乎一致显示牛庄油田原油中沙四 段烃源岩的贡献,而预测可能为主力烃源岩的沙三 段的成烃贡献标志物反而不太突出.从牛庄与部分 王家岗原油中4甲基甾烷/C2g 规则甾烷稍有优势 (图 4a),与沙三下烃源岩相对较高的4甲基甾烷含 量较为吻合,可判断沙三下烃源岩也是有成烃贡献 的.另外,从牛庄原油的低硫而八面河、王家岗原油 的相对高硫特性来看,似乎不能排除牛庄原油中沙 三段烃源岩的贡献.

上述研究表明,牛庄油田原油中普遍含有沙四 段烃源岩所生的烃类(如饱和烃中链烷烃及甾萜 类),由于成熟度、可能的相变因素,斜坡带与深洼带 沙四段烃源岩所生烃性质会有所变化,由于不同烃 源岩相同演化阶段、同一烃源岩不同演化阶段所生 烃性质均有变化,牛庄油田原油中沙三下、沙四段烃 源岩的相对贡献量尚难下定论,相关研究有待深入.

4 结论

(1)油 – 油、油源对比表明, 牛庄油田原油的低 Pr/Ph、低 C₂₄ 四环/C₂₆ 三环萜烷值、相对于沙三段 烃源岩较高的伽玛蜡烷与甾烷含量等特征与沙四上 亚段咸水相成因烃源岩相似, 表明两者具有成因联 系; 原油相对于沙四段烃源岩偏高的4 甲基甾烷含 量表明以较高4 甲基甾烷丰度为特征的沙三下段 烃源岩有所贡献; 多项重要地化指标反映沙三中烃 源岩对牛庄原油的贡献甚微. 牛庄油田原油的物性 及烃类组成特征反映其为沙三下、沙四上亚段的混 源油.(2)牛庄油田沙三段原油与沙三段烃源岩非一

一对应的亲缘关系,表明牛庄洼陷"岩性油气藏"可 能并非自生自储为主,牛庄洼陷隐蔽油气藏的成藏 模式与机理有待进一步研究.(3)牛庄油田原油中普 遍混有沙四段成因烃类表明,牛庄洼陷中沙四段有 利烃源岩发育,只要运移条件允许完全可为斜坡带 的王家岗、八面河油田供油,这与先前关于牛庄洼陷 南斜坡油气主要来自牛庄洼陷相对成熟的烃源岩的

结论相吻合.

References

- Gao, Y. J., Qiu, G. Q., Chen, D. X., et al., 2004. Oil/gas shows in lithologic reservoirs in Niuzhuang sag and their main controlling factors. Oil & Gas Geology, 25 (3):284-287 (in Chinese with English abstract).
- Li, P. L., Pang, X. Q., Chen, D. X., et al., 2004. Petroleum accumulation mechanism and model of sand lens in Jiy ang subbasin. *Science in China* (*Ser. D*), 34(Suppl.): 143-151 (in Chinese).
- Li S. M., Pang, X. Q., Qiu, G. Q., et al., 2005. Origin of the Ordovician oil from WG1 well and its significance. *Earth Science – Journal of China University of Geosciences*, 30 (4): 451 – 458 (in Chinese with English abstract).
- Li, S. M., Li, M. W., Pang, X. Q., et al., 2003. Geochemistry of petroleum systems in the Niuzhuang south slope of Bohai bay basin—part 1: Source rock characterization. Organic Geochemistry, 34(3): 389 - 412.
- Li, S. M., Pang, X. Q., Jin Z. J., 2004. Application of bio markers in quantitative source assessment of oil pools. *Acta Geologica Sinica*, 78(2): 701 – 708.
- Pang, X. Q., Li, M. W., Li, S. M., et al., 2003. Geochemistry of petroleum systems in the Niuzhuang south slope of Bohai bay basin—part 2: Evidence for significant con tribution of mature source rocks to "immature oils" in the Bamianhe field. Organic Geochemistry, 34(7): 931-950.
- Pang X. Q., Li, S. M., Li, M. W., et al., 2004. Origin and accumulation of the oils from Bamianhe oilfield, Bohai bay basin, eastern China. *Science in China* (*Ser. D*), 34 (Suppl.): 152 – 161 (in Chinese).
- Zeng, J. H., Zhang, S. W., Qiu, N. S., et al., 2002. Degree of

oil gas charged in lens shaped sand body in Jiyang de pression and its main controlling factors. *Earth Sci ence—Journal of China University of Geosciences*, 27 (6):729-732 (in Chinese with English abstract).

- Zhang, C. R., 1989. Hydrocarbons generation and migration in the south slope of the Dongying depression. *Petrole um Technology*, 11(4): 27 - 34 (in Chinese with English abstract).
- Zhang, J., Pang, X. Q., Chen D. X., et al., 2003. Petroleum accumulation mechanism and its main controlling fac tors of sand lens in Niuzhuang sag. Oil & Gas Geology, 24(3): 233 - 237 (in Chinese with English abstract).

附中文参考文献

- 高永进,邱桂强,陈冬霞,等,2004. 牛庄洼陷岩性油藏含油气 性及主控因素. 石油与天然气地质,25(3):284 – 287.
- 李丕龙, 庞雄奇, 陈冬霞, 等, 2004. 济阳坳陷砂岩透镜体油藏 成因机理与模式. 中国科学(D辑), 34(增刊): 143-151.
- 李素梅, 庞雄奇, 邱桂强, 等, 2005. 王古1井奥陶系古潜山原 油成因及其意义. 地球科学 —— 中国地质大学学报, 30 (4):451-458.
- 庞雄奇,李素梅,黎茂稳,等,2004. 渤海湾盆地八面河地区油 气来源与成藏特征. 中国科学(D辑). 34(增刊1): 152-161.
- 曾溅辉,张善文,邱楠生,等,2002.济阳坳陷砂岩透镜体油气 藏充满度大小及其主控因素.地球科学——中国地质 大学学报,27(6):729-732.
- 张春荣, 1989. 东营凹陷南部斜坡油气的生成及运移. 石油技 术, 11(4): 27 - 34.
- 张俊, 庞雄奇, 陈冬霞, 等, 2003. 牛庄洼陷砂岩透镜体成藏特 征及主控因素剖析. 石油与天然气地质, 24(3): 233-237.