CO_2 -原油体系混相状态的渗流特性

陈兴隆1,秦积舜1,张 可2

1. 中国石油勘探开发研究院提高石油采率国家重点实验室,北京 100083

2. 中国科学院渗流流体力学研究所,河北廊坊 065007

摘要:为认识混相状态的 CO₂ 在油藏中的渗流特征,利用高温高压 三维模拟 装置对 CO₂-地层原油体 系在油藏环境条件下的 混相驱替过程进行研究.实验发现:模型产出液量与注入量存在较大差异;采收率、含水和气油比曲线亦表现出 CO₂ 在孔隙介 质中渗流的复杂特征.由实时监测的含水饱和度分布场图 分析认为:CO₂ 与原油混相后,流体粘度降低、渗流阻力减小,这是 提高采收率的重要原因之一;同时,CO₂/原油相与部分接触水能形成近似于三相混相的状态.实验研究还表明 CO₂ 以高密度 气体形式进入饱和水、饱和油无法进入的微孔隙,这是注入量和产出量不一致的主要原因.

关键词: CO2 驱; 混相状态; 平板模型; 饱和度; 渗流特征.

中图分类号: P618 文章编号: 1000-2383(2009)05-0806-05 收稿日期: 2008-12-01

Flowing Characteristics of CO₂-Oil System in Miscible Phase Flooding in Porous Media

CHEN Xing-long¹, QIN Ji-shun¹, ZHANG Ke²

Key Laboratory of EOR National, China Research Institute of Petroleum Exploration & Development, Beijing 100083, China
CN PC and Chinese Academy of Sciences, Institute of Porous Flow & Fluid Mechanics, Langfang 065007, China

Abstract At present, oil recovery by CO_2 driving is getting increasingly important. In order to probe into the flow mechanism of CO_2 in miscible state, a high temperature and high pressure 3-D device was used to study miscible flooding of CO_2 and oil. With this experiment, it is found that there is a big difference between the production and the injection volume. The complex flowing characteristics of CO_2 flooding in porous media are observed in the recovery, water cut and gas-oil ratio curves. By analyzing water saturation distribution map which is measured by saturation probe, it is proved that CO_2 and oil can be miscible. The viscosity of miscible liquid and flowing pressure decreases, which is one of the important mechanisms in enhanced oil recovery. At the same time, miscible CO_2 and oil contacted with water can make up a similar 3 phase state. Experiment results also show that the main reason for the difference between the production and the injection is that CO_2 can flow into micro pores in high density gas state while water and oil cann't.

Key words: CO₂ flooding; miscible state; plate model; saturation; flowing characteristic.

CO₂ 驱油提高采收率技术具有很长的发展历 史,早在1952年沃顿等人就获得了注CO₂ 提高采 收率技术的第一个专利.1964年美国密德斯庄油田 首次实施了注CO₂ 项目,1972年,美国科利一施耐 德油田实施了第一个注CO₂ 提高采收率项目 (Holm and O'Brien, 1971; Holm, 1987; Langston *et al*., 1988).近年来,受环境保护及CO₂ 资源 化利用趋势的影响(郝振纯等,2007; 牟林等,2007), 石油工业对 CO₂ 驱油提高采收率技术高度重视,而 且 CO₂ 驱油机理等相关研究也获得了长足发展.在 矿场试验中,CO₂ 与原油体系能否混相被广为关 注.混相状态的渗流过程涉及复杂的气体相态变化, 多种渗流特征在研究领域也是重点(谢尚贤,1991; Khataniar, 1999; Q am ar and Islam, 2000; 郝永卯

基金项目: 国家"973"项目(No. 2006CB705804).

作者简介:陈兴隆(1974—),男,博士,目前在中国石油勘探开发研究院博士后流动站工作,主要从事油气渗流理论及应用研究.

E-mail: chx lhdpu@163.com ?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

等,2005).室内研究多以一维模型为主(李向良和李 振泉,2004)来研究 CO₂ 混相驱替提高采收率能力 等特征.由于一维模型的局限,无法得知 CO₂ 在油 层内的平面分布以及渗流过程的状态.针对这些问 题,采用真实砂岩平板模型,研究 CO₂ 与地层原油 的混相作用过程及体系在孔隙介质中的渗流特征.

1 CO2 混相驱替实验

CO₂ 混相驱替实验以国内某油田现场条件为 依据,真实砂岩平板模型的孔隙结构及孔隙分布特 征与油藏孔隙更为接近(高永进等,2007);油藏条件 及地层流体性质见表 1. 由细管驱替实验测得 CO₂ 与地层原油的最小混相压力(MMP)为 20. 1 MPa, 低于地层压力(21.5 MPa),因而在地层压力条件下 CO₂ 与地层原油能够混相(Kriens, 1989).

1.1 实验流程

CO₂ 混相驱替实验是利用高温高压复杂驱动 体系三维物理模拟系统装置开展的(徐晖等, 2007), 实验流程如图 1 所示. 装置可实现高温(< 90 ℃)、 高压(< 25 M Pa)条件下的测量,在模型内分布有压 差和饱和度测量点,实时监测模型内渗流状态.

1.2 实验条件

依照油藏条件进行如下设计:

(1)实验温度 75 ℃,回压控制在 21 MPa,CO2 与地层原油呈混相状态;

(2) 模拟地层水和注入水: 总矿化度 15 000 mL/g, 黏度 0.9 mPa °s;

表 1 油蒜	藏条件及地层原油性质
1×1 /田市	战赤叶及地层际冲住队

Table 1 Reservoir condition and properties of crude oil

油藏	条件				
压力 (MPa)	温度 (℃)	饱和压力 (MPa)	气油比 (m ^{3/} m ³)	密度 (g/ cm ³)	粘度 (mPa°s)
21.5	75.4	9.8	28.2	0.7723	1.7

表 1~表 3、图 2~图 4 中的数据、曲线、图形及实验图片均由中 国石油勘探开发研究院测试测试者:陈兴隆等,测试方法和精度要 求均参照行业标准 SY/T5336-1996.

(3)模拟地层油:90%现场油罐油+10%高精航
空煤油+天然气(气油比为 28 m³/m³),黏度为
1.6 mPa °s;

(4)平板砂岩模型尺寸: 300 mm× 300 mm× 40 mm;

(5)采用 1/4 五点法井网,垂直井对角注采 方式.

1.3 主要实验步骤

(1)模型准备:岩石切割、渗透率测试、压力和饱 和度测点分布、模型封装等;

(2)模型安装:平板砂岩模型经过预处理后放入 高压釜内,并连接流程;

(3)实验前模型预处理:抽真空、系统升温、控制 回压、饱和水、饱和油;

(4)水驱开采:驱替速度为 0.2 mL/min, 当含水90%时,水驱阶段结束:

(5)注入 CO² 和水的组合段塞: 连续注入 3 个 段塞后, 再注入 CO² (0.65 PV), 最后水驱至含水 98 %时整体实验结束. 组合段塞设计为: 第1组段塞 为0.2 PV CO²和0.2 PV水的组合而成, 第2、3组段

图1 实验流程

Fig. 1 Flow chart of experiment

1. 泵工作介质; 2. ISCO 泵; 3. 平板砂岩模型 4. 高压釜; 5. 恒温箱; 6. 电子天平; 7. 气体流量计; 8. 回压控制器; 9. Rusky 泵; 10. 信号采集、控制系统; 11. 压差传感器; 12. 饱和度探针; 13. 油、水及 CO₂ 中间容器

Table 2 Model and its controlling parameters

孔隙度	渗透率	初始含油饱和度	围压	回压
(%)	(10 ^{-3µ} m ²)	(%)	(MPa)	(M Pa)
16.7	70	60	23	21

表 3 各阶段驱替效率

水驱采收率(%) CO_2 +水段塞采收率(%)			单相 CO ₂ 驱替		
无水期	含水 90%	第1组	第2组	第3组	「后采收率(%)
8.33	27.1	29.74	31.11	48.19	63.86

塞均为 0.1 PV CO₂ 和 0.1 PV 水的组合而成, 总注 $\lambda = 0.8 \text{ PV}$. 模型条件及控制参数 见表 2.

生产特征变化规律 2

由于平板模型不同于一维模型,进而采收率和 含水等生产特征也显示出不同,主要阶段的采收率 数据见表 3.

实验结果显示:无水期采收率较低,小干 10%; 水驱采收率仅为 27.1 %, 远小干一维模型的实验效 果,但与油田开发情况吻合较好,组合段塞驱替后, 采收率达到 48.19%, 阶段提高 21.09%; CO2 驱后 最终采收率为 63.86%. 段塞及单相 CO2 驱替比常 规水驱方法提高采收率 30%以上.

由图 2 可知, CO_2 + 水组合段塞的驱替效果具 有明显的延迟特点.从 0.33 PV 处注入至 0.55 PV, 采收率未见升高,但 0.55 PV 后,采收率缓慢增加. 由延迟性可以推断第2阶段的提高采收率效果大部 分也是第1组段塞所贡献的.第3阶段曲线显示,第 2、3 个段塞的提高采收率能力减弱. 后期 CO2 单相 驱替提高采收率幅度较大,但是气油比大幅上升、采

采收率、含水量及气油比变化曲线 图 2 Fig. 2 Curves of oil recovery, water cut and GOR

收率增幅降低,说明 CO2 在模型内形成窜流通道,

由含水曲线可知:第1阶段内,第一段塞的 CO₂ 在后续水驱的推动下,有效地提高了驱替效率,此时 含水大幅度降低. 在单相 CO2 驱阶段, 含水迅速降 低,说明 CO_2 扩大了波及体积:在后期水驱阶段中, 保持了低含水状态.

由于原油中溶有天然气,在计算产出气油比时要 依据初始气油比进行修正,从气油比曲线可知,CO2 在水中具有很强的溶解性, 目 CO2 与模拟油形成混 相后,其在油相中的溶解能力变得更高,在 CO2 累积 注入量接近 1 PV 时 (见图 2 pr 1.5 PV 处), 产出端的 气油比开始增加, 说明 CO2 在岩石孔隙缓慢渗流, 扩 大了驱油面积,并且在驱替末期显现出指进特征.

混相驱渗流特征及分析 3

3.1 混相驱在平板模型中的渗流特征

在实验准备阶段,利用点渗仪测量平板模型的 渗透率分布状况,如图 3 (a) 所示,岩心平均渗透率 为 $70 \times 10^{-3} \mu m^2$, 整体均质性较强, 平板左侧渗透 率略高.实验时,注入井分布在平板模型左上角,产 出井在右下角,图3中注入井和产出井位置不变.

由图 3 知. 水驱阶段的无水期, 注入水波及面积 较小(图 3b);水驱阶段结束时,已形成较明显的指 进条带,继续注水也无法有效动用位于主流线两侧 的剩余油(图 3c); 段塞组合驱及单相 CO_2 驱后, 采 收率大幅度提高(图 3d). 尽管注入的CO2 并没有改 变指进条带的形状,但条带两侧的剩余油得到较大 程度的动用.

结合生产特征和饱和度场图,实验有3个典 型现象: (1)在 CO₂ 注入初期(第1个段塞)和单 相 CO_2 注入阶段, 异常现象有: 产出液量远低于 恒速注入量,且持续时间较长:由于产出量低,以 产出液孔隙体积倍数为横坐标的数据点表现得密 集: (2)图 2 中含水率曲线大幅度降低, 该现象与 产出量低的现象是相对应的;(3)水驱使模型内形 成高渗条带,而 CO_2 驱使条带两侧的剩余油得到 较好的动用.

3.2 渗流特征分析

由于实验压力大于混相压力,因而 CO2 驱替过 程必然包括了一段时间的逐步混相过程,只有达到 混相压力时,油滴才与CO2形成单一相(用CO2/原 油相表示)(图4).

由理论(Kriens, 1989;李向良和李振泉, 2004) 可定性判断:CO2/原油相的密度及粘度均介于 CO2 ?1994-2015 China Academic Journal Electronic Publish

图 3 气测渗透率和驱替过程中含水饱和度场

Fig. 3 Distribution of gas permeability and water saturation during flooding a. 模型初始气测渗透率等值图; b. 水驱过程- 无水期结束状态; c. 水驱过程- 水驱结束状态; d. 段塞驱、CO2 驱过程- 结束状态

图 4 CO₂-原油逐步混相过程(75 ℃) Fig. 4 CO₂-crude oil miscible process

和原油两相之间,因而渗流阻力减小.在高压状态 下,CO2 在水中的溶解度大幅度提高,与 CO2/原油 相较长时间接触的水相也会对其中的 CO2 组分有。 溶解作用.在地层水中,存在不同含量的钙离子,溶 解成碳酸根的 CO₂ 与钙离子形成微量沉积,这一作 用加快了水对 CO₂ 的吸收.因而,CO₂/原油和水在 长时间接触的条件下易于形成近似于三相混相的状态.此时 CO₂ 不断向剩余油中溶解并混相,与 CO₂/ 原油相接触的水相也逐步扩展到剩余油区域,其结 果是既扩大了剩余油的波及面积又降低了渗流阻 力,使采收率提高 30%以上.

根据混相过程的论述,分析 3 个典型现象:在 CO2 注入前缘,一部分 CO2 与原油逐渐混相,另一 部分 CO2 以高密度气体形式轻易进入饱和水、饱和 油无法进入的微孔隙,进而产出液量很低.CO2 注 入量越大,数据点越密集,在第 1 个段塞和单相 CO2 注入阶段表现明显.同时,CO2 又扩大了波及体积, 这是由于 CO2 进入微孔隙后继续进行混相过程,逐 渐消除了油相与岩石颗粒间的界面张力,使得 CO2/ 原油相能在微孔隙内流动. 含水率降低的现象是在 CO² 注入 0.22 PV 后 显示出来,该阶段也是 CO² 与原油逐渐混相的过 程.由于形成混相液量 较少,低含水阶段持续时间 短.在单相 CO² 注入阶段,CO² 注入量增大并且有 3 组段塞注入量的累积,导致低含水期持续时间长.在 该阶段后期气油比大幅上升的情况下,含水率仍能 保持低值,说明 CO²/原油相与接触水能形成近似于 三相混相的状态.

4 结论

利用砂岩平板模型,在油藏条件下进行 CO₂-地 层原油混相驱替实验,采收率和含水量等生产特征 曲线均表现出 CO₂-地层原油在孔隙介质中渗流的 复杂特征.

(1)由含水饱和度场图分析得到认识:CO₂-原油 混相后,黏度降低、渗流阻力减小,有利于提高采收 率;同时,CO₂/原油相与接触水能形成近似于三相混 相的状态;(2)在CO₂ 注入初期,其以高密度气体形式 轻易进入油、水无法进入的微孔隙是产出量低的主要 原因,通常现场受多种因素干扰而无法辨别.

References

- Gao, Y. J., Tian, M. R., Jia, G. H., 2007. Physical simulation about sandbody physical property control on forming lithological reservoirs. *Earth Science-Journal of China* University of Geosciences, 32(2): 274-278 (in Chinese with English abstract).
- Hao, Y. M., Bo, Q. W., Chen, Y. M., 2005. Laboratory investigation of CO₂ flooding. *Petroleum Exploration and Development*. 32(2): 110-112 (in Chinese with English abstract).
- Hao, Z. C., Li, L., Wang, J. H., et al., 2007. Impact of climate change on surface water resources. *Earth Science-Journal of China University of Geosciences*, 32(3):425-431 (in Chinese with English abstract).
- Holm, W. L., 1987. CO₂ flooding processing evaluation. Journal of Petroleum Technology, 11: 1337–1342.
- Holm, W. L., O' Brien, L. J., 1971. CO₂ flooding pilot test in Middles oil field. *Journal of Petroleum Technology*, 4: 431-442.
- Khataniar, S., Kamath, V. A., Patil S. L., et al., 1999. CO₂ and miscible gas injection for enhanced recovery of schrader bluff heavy oil. SPE International Thermal Operations and Heavy Oil Symposium. SPE (54085):

- Kriens. M, A., 1989. CO₂ Flooding mechanism and engineering design. Petroleum Industrial Press, Beijing.
- Langston, M. V., Hoadley, S. F., Young, D. N., 1988. SA-CROC unit CO₂ flooding ultimate evaluation. SPE EOR Symposium, 4 (16 - 21), Tulsa, Oklahoma, SPE-17321-MS.
- Li X. L., Li, Z. Q., 2004. Physical simulation on miscible CO₂ flooding in long-core model. *Petroleum Exploration and Development*, 31(5): 102-104 (in Chinese with English abstract).
- Mu, L., Wu, D. X., Zhou, G., et al., 2007. Changes in Atlantic thermohaline circulation under different atmospheric CO₂ scenarios. *Earth Science-Journal of China Uni*versity of Geosciences, 32(1): 141-146 (in Chinese with English abstract).
- Qamar, M. M., Islam, M. R., 2000. CO₂ Injection in the Weyburn field of Canada: Optimization of enhanced oil recovery and greenhouse gas storage with horizontal wells. SPE/ DOE Improved Oil Recovery Symposium. SPE(59327): 1-16.
- Xie, S. X., 1991. Laboratory investigation of CO₂ flooding for Daqing oil field. *Daqing Petroleum Geology and Exploration*, 10(4): 32-35 (in Chinese with English abstract).
- Xu, H., Qin, J. S., Wang, J. L., et al., 2007. Physical simulation on polymer flooding macro flowing mechanism of 3D model. *Petroleum Exploration and Development*, 34 (3): 36-40 (in Chinese with English abstract).

附中文参考文献

- 高永进,田美荣,贾光华,2007.砂体物性对岩性油藏成藏控 制作用物理模拟.地球科学——中国地质大学学报,32 (2):274-278.
- 郝永卯, 薄启炜, 陈月明, 2005. CO₂ 驱油实验研究. 石油勘探 与开发, 32(2): 110-112.
- 郝振纯,李丽,王加虎,等,2007. 气候变化对地表水资源的影响. 地 球科 学——中 国 地 质大 学 学 报,32 (3): 425-431.
- 李向良,李振泉,2004.二氧化碳混相驱的长岩心物理模拟. 石油勘探与开发,31(5):102-104.
- 牟林, 吴德星, 周刚, 等, 2007. 温室气体浓度增加情景下大西 洋温盐环流的演变. 地球科学——中国地质大学学报, 32(1): 141-146.
- 谢尚贤, 1991. 大庆油田 CO₂ 驱油室内实验研究. 大庆石油 地质与开发, 10(4): 32-35.
- 徐晖,秦积舜,王家禄,等,2007.聚合物驱宏观渗流机理的三维油藏物理模拟研究.石油勘探与开发,34(3);

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net