doi:10.3799/dqkx.2012.116

基于染色示踪的膜下滴灌棉田水盐运移规律

王在敏1, 靳孟贵1*, 何雨江2, 汪丙国1

1. 中国地质大学生物地质与环境地质国家重点实验室,湖北武汉 430074

2. 中国地质科学院水文地质环境地质研究所,河北石家庄 050803

摘要:采用亮蓝 FCF 染色示踪剂,研究膜下滴灌条件的水盐运移规律;分别在灌溉前、灌溉中和灌溉后等不同时间段共开挖 13 个时刻的剖面,观察膜下滴灌湿润面的运移情况;以 10 cm 间隔的网格,用 MP406 土壤水分探测器原位测定 3 120 个点的 土壤体积含水率,同时取 1 430 份土样,利用 1:5 土水比浸提法测定土壤盐分;并利用 WATCHDOG 气象站监测研究区气象 要素.结果表明.染色示踪能直观表征土壤水盐运动轨迹;膜下滴灌条件下,垂直滴灌带方向土壤水流呈点源入渗特征、沿滴 灌带方向近似呈线源入渗特征;现行灌溉模式下,壤质砂土湿润锋横向运移速率约为 8 cm/h;滴灌对滴头附近土体有一定洗 盐效果,未覆膜区域地表土体出现盐分积累;灌水时间越长,湿润锋越深,横向扩展速率接近无作物小区(8 cm/h);从土壤水合 理利用角度考虑,满足研究区一膜一带四行的种植模式和土质的单次合理灌水量应为 29.4~69.8 mm. 关键词:膜下滴灌;土壤水分;染色示踪;亮蓝 FCF;水文地质学;环境工程.

中图分类号: X143 **文章编号:** 1000-2383(2012)05-1093-08 **收稿日期:** 2011-11-20

Water Flow and Salt Transport in Cotton Field of Mulched Drip-Irrigation Using Dye Tracer

WANG Zai-min¹, JIN Meng-gui^{1*}, HE Yu-jiang², WANG Bing-guo¹

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
 Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, ShiJiazhuang 050803, China

Abstract: Brilliant Blue FCF was used to trace water flow in cotton field of mulched drip-irrigation using brackish water. 13 cross sections were dug before irrigation, during irrigation and after irrigation, respectively, for observation of the movement of wetting front. The soil moistures were in-situ measured at 3 120 points by using MP406 moisture probe and 1 430 soil samples were sampled to analyze soil salinity by extracting soil water with 1;5 of soil to water, while cross sections were divided as each grid 10 cm \times 10 cm. The meteorology data were measured by WATCHDOG. The results show that the dye tracer can trace soil water flow and salinity transport obviously. There are two infiltrating states for soil water and salinity transport characters in field under film mulched drip-irrigation; point source infiltrating in the direction vertical to drip irrigation pipe and approximate line source infiltrating along with drip irrigation pipe. The velocity of soil wetting front movement was 8cm/h under the present irrigation. The soil salinity near the dripper was leached by irrigation water; however, the salt accumulated in the surface soil without film mulch. The wetting front extended with the irrigation time, and the spreading distance was similar to that with no plants. For efficient use of soil water, the reasonable irrigation quota for the present planting pattern of one film, one irrigation pipe and four row cottons was 29. 4-69.8 mm in the study area.

Key words: mulched drip-irrigation; soil moisture; dye tracer; brilliant blue FCF; hydrogeology; environmental engineering.

由于土壤性质的时空变异性、田间根系分布和 根系功能的不确定性,以及时空高分辨监测土壤水 盐分布手段的局限性,很难准确刻画膜下滴灌条件下的土壤水盐动态(Clothier et al., 1985; Houk

基金项目:国家自然科学基金项目(No. 41172218);国家科技支撑计划项目(No. 2007BAD38B01).

作者简介:王在敏(1986一),女,博士研究生,研究方向为水文循环与生态环境、水流与溶质运移.

^{*} 通讯作者:靳孟贵, E-mail: mgjin@cug.edu.cn

et al., 2006; Northey *et al.*, 2006; Karlberg *et al.*, 2007),而采用示踪方法可以测定土壤水盐运移情况(Wang *et al.*, 2006). 20世纪末以来,采用染色法进行非饱和带流示踪试验越来越多(Bogner *et al.*, 2008,2011). 在众多示踪剂中,亮蓝FCF 以其染色效果好、被土壤吸附较弱等明显优势,成为非饱和带的首选示踪剂(王康,2009).

为直观准确显示土壤水运动轨迹,监测和分析 田间土壤水盐动态,本文以亮蓝 FCF 为示踪剂,开 展膜下滴灌染色示踪试验,分析土壤水盐运移规律; 并在此基础上,进一步分析不同灌水定额的膜下滴 灌棉田水盐运移规律,为田间灌溉和水盐调控提供 依据.

1 材料和方法

1.1 试验区概况

试验于 2009 年在新疆巴音郭楞蒙古自治州水 利管理处水利部重点灌溉试验站完成.试验区属干 旱内陆地区,降水稀少,蒸发强烈,年降水量53.3~ 62.7 mm,蒸发量为 2 273~2 788 mm. 当地年平均 气温 11.48 ℃,最低气温-30.9 ℃,最高42.2 ℃.区 内光照充足,年均日照时数 3 036.2 h;平均风速 2.4 m/s,最大风速 22 m/s.试验站地下水矿化度为 2.98~3.21 g/L,水化学类型为Cl•SO4-Na;地表 水为孔雀河来水,受博斯腾湖水质影响,平均矿化度 为1.01 g/L.站内设有 WATCHDOG 气象站监测气 象要素.试验地土质主要为壤质砂土,容重 1.43~ 1.74 g/cm³(何雨江等,2010a).

1.2 试验设计

试验在相同灌溉定额的无作物小区和有作物小 区进行.利用染色法研究无作物小区膜下滴灌土壤 水盐运移规律;同时,在有作物小区进行不同灌水定 额试验,探讨棉花蒸腾作用在不同灌水定额下的土 壤水分运移规律.

1.2.1 无作物小区试验 试验地平面布置如图 1 所示,图中虚线框内为试验区,面积 2 500 cm×400 cm.中间包括 3 条滴灌带,滴灌带间距 150 cm,滴头间距 30 cm,滴灌带上覆膜,宽 110 cm,两滴灌带间未覆膜区域宽 40 cm(汪丙国等,2010),试验前一周铲除该区作物.以亮蓝 FCF(试验土壤为壤质砂土,对亮蓝 FCF吸附性较弱)为染色示踪剂,投入供水水箱,浓度约为 10 g/L.灌溉水为直接抽取的 浅层地下微咸水(矿化度 3 g/L 左右).根据当地生

图 1 试验区平面布置 Fig. 1 Bird view of the experimental area

产实 践 灌 溉 制 度, 持 续 滴 灌 4 h, 滴 头 流 量 为 2.2 L/h, 相当于次灌水量 19.9 mm.

以试验区域内中间一条滴灌带为对象,以滴头 为中心,垂直和平行滴灌带方向开挖三维剖面,见图 2a. 先后开挖剖面共13个,分别为滴灌前1个、滴灌 中3个(滴灌4h)、滴灌后9个,持续7d,最后一次 为下次灌水前.具体开挖剖面时间为0,0.5,1.5, 2.5,4,6,8,24,55,79,103,127,151h.为了最低限 度降低开挖剖面对土壤水盐运移的影响,剖面从滴 灌带尾部滴头开始挖起,每隔5个滴头开挖一个剖 面,观测取样结束时,立即回填,确保不影响该滴灌 带其他滴头的水流入渗和运移.

如图 2b 所示,垂直滴灌带方向剖面宽 80 cm, 平行滴灌带方向宽 30 cm,深度均为 100 cm,垂直滴 灌带剖面以网格形式取样,间隔 10 cm,沿滴灌带方 向剖面取样点位于两滴头中间 15 cm 处.利用 MP406 土壤水分监测仪原位测定土壤体积含水率 并采集土样.土样烘干后,磨碎过 1 mm 筛,称取18 g 土加 90 mL 纯净水配成溶液,静置 12 h 后采用 DDS-307 电导仪测量溶液电导率 *EC*_{1:5},表征土壤 盐分含量.

1.2.2 有作物小区试验 在 10⁴ m² 小区内灌溉定 额为 4 500 m³,选取棉花长势较均一的田块进行不 同灌水定额试验(灌溉设施、气象条件等与无作物小 区一致).灌水定额为 19.9 mm(灌水 4 h)、24.5 mm (灌水 5 h)、29.4 mm(灌水 6 h)、37.5 mm(灌水 8 h)、43.5 mm(灌水 9 h)和 69.8 mm(灌水 14 h).土 壤水运移监测方法与无作物小区相同.

2 结果与讨论

2.1 无作物条件下土壤水分运移特征

土壤染色情况可以直观反映膜下滴灌条件下土 壤水分运移特征.图3为灌水时垂直滴灌带的剖面, 时间分别为灌水后0.5,1.5和2.5h;对比不同时刻 的剖面图可以直观看出湿锋面的扩展过程,水流以 滴头为中心向周边扩散,湿润面呈不规则扇形,湿润 锋随时间延长而增大,为点源入渗的典型形态;示踪 剂标识滴灌水流湿润锋横向运移速率约为8 cm/h. 试验期间最大扩展距离为30 cm 左右.图4 为沿滴 灌带方向的剖面图,由图4可以看出,灌水0.5h及 1.5h后,水流以滴头为中心产生横纵向运移,湿锋

图 4 滴灌带方向剖面湿润面变化 Fig. 4 Pictures of wetting front along the drip-irrigation pipe

面总体呈两侧入渗深、中间入渗浅的"凹"型;但灌水 2.5h后,由于相邻滴头之间的点源交汇作用,湿锋 面"凹"型不明显,近似呈一水平直线,表现为线源入 渗特征,说明在滴头间距为 30 cm 时,灌水 2.5h后 沿滴灌带方向可近似刻画为线源入渗状态.

因此,膜下滴灌条件下(一膜一带四行,内行棉 花距滴头 30 cm,外行距滴头 45 cm)土壤湿润体为 以滴灌带为中心,向周边延伸的半圆柱体,最大扩展 距离 30 cm 左右(棉花内行).显然距离滴头 45 cm 的外行棉花,很难直接获得滴灌水分,说明这种种植 与滴灌方式具有一定的局限性,需要调节灌水定额 和灌水频率或改变种植模式(如一膜两带四行)以提 高水分利用效率.

垂直滴灌带方向土壤剖面体积含水率在灌水前 (0 h),灌水中(0.5,2.5 h)和灌水后(6,24,151 h)的 变化情况如图 5 所示.整体看,在 0~60 cm 深度内 土壤体积含水率随时间变化较大,地表 60 cm 以下 土壤体积含水率随时间变化较小.灌水期间,水流以 滴头为中心,径向流动;灌水结束,土壤水分重新分 布,水流形态改变,径向流动不再明显.另外,受未覆 膜区土面蒸发影响,土壤水趋向未覆膜区流动.

由图 6 可见,滴头处与滴头间土壤剖面体积含 水率变化规律一致,与染色示踪观测结果一致,即该 方向水流入渗模式为近似线源入渗.

2.2 无作物条件下土壤盐分运移特征

膜下滴灌田间土壤水均衡要素如图 7 所示,其 补给源主要为灌水和地下水的补给,汇主要为蒸发 及深层渗漏.未覆膜区受大气影响土壤水蒸发强烈, 水去盐留,随时间延续,在未覆膜区形成高盐区(图 8 中 0 时刻).

图 8 为垂直滴灌带方向土壤剖面盐分在灌水前 (0 h),灌水中(0.5,2.5 h)和灌水后(6,24,151 h)的 变化情况.灌水前,土壤盐分最低处为滴头附近(电 导率小于 500 μ s/cm),最高处在未覆膜区(电导率 4 000~6 000 μ s/cm);其次覆膜区灌水前地表以下 30~50 cm 土层盐分相对较高(电导率 1 000~ 2 000 μ s/cm),60 cm 以下盐分较低(电导率 <500 μ s/cm),60 cm 以下盐分较低(电导率 <500 μ s/cm),这可能是因为滴灌水分推进,致使湿 润锋边缘盐分较高.由图 5 及图 8 可以看出,现行灌 溉条件下,地表以下 30~50 cm 土层处于湿润锋边 缘,多次灌水后,该区域盐分相对较高.

由灌溉中和灌溉后盐分等值线图发现,滴灌条 件下,未覆膜区较深部土壤盐分随时间延续向未覆 膜地表汇聚.这是因为滴头附近土壤水分受大气影

图 5 不同时间土壤剖面体积含水率等值线 Fig. 5 Isolines of soil moisture in profile at different times

响甚微,而未覆膜区受大气影响明显、土壤水分极易向大气蒸发散失,使得水势降低,覆膜区与未覆膜区

的水势差驱使土壤水分和盐分从覆膜区向未覆膜区 水平迁移,最后水走盐留,致使膜间表层土壤电导率

Fig. 7 Recharge and discharge of soil water under mulched drip-irrigation without transpiration

最高.而膜下滴灌后水分向滴头径向运移,使周边含水量升高(图5),土壤盐分被稀释,电导率逐渐降低.灌水7天后,土壤剖面高盐区向地表及未覆膜中心推进,没有恢复灌水前的状况(表1).由表(取0~60 cm 土壤混合样测定其含盐量)可以看出,灌水过程中,根区盐分淋洗量为0.72g/kg,上一次灌水结

束到下一次灌水前根区返盐量为0.03 g/kg.可见淋 洗量远大于返盐量,灌水周期(7 d)合适.另外,整个 过程中,滴头附近土体一直处于低盐状态(电导率 <500 μs/cm),能保证棉花的正常生长.

当地实际生产中,棉花种植方式为一膜一带四 行,外行作物根系主要分布在覆膜未覆膜过渡带(何 雨江等,2010b);而该区域地表及其以下 20 cm 土体 受未覆膜区影响,长时间处于高盐状态,这会直接影 响外行棉花正常生长.因此实际生产中,需要结合具 体条件改变棉花种植和滴灌带布置方式,把棉花种 植在高水低盐区,或者在适当时间加大灌水定额,以 淋洗过渡带土体盐分.

2.3 考虑棉花蒸腾作用不同灌水定额下土壤水分 运移规律

2.3.1 膜下滴灌腾发量计算 为了确定植物蒸腾

表1 灌水前后根区土壤总盐含量

Table 1 The soil total salts contents in root zone

灌水前	灌水结束后	下一次灌水前	淋洗量	返盐量
(g/kg)	(g/kg)	(g/kg)	(g/kg)	(g/kg)
2.97	2.25	2.28	0.72	0.03

量和株间土壤蒸发量,首先要确定潜在腾发量(*ET*_p).潜在腾发量计算公式为:

 $ET_{p} = K_{c} \cdot ET_{0}$, (1) 式中, ET_{0} 为参考作物腾发量; K_{c} 为基本作物系数 (Dehghanisanij *et al.*, 2004).

下面分别计算研究区参考作物腾发量和膜下滴 灌条件下棉花不同生育期的基本作物系数.参考作物 腾发速率 ET_0 表示某一高度为 0.12 m,叶面阻力为 70 s/m,反射率为 0.23 的假想作物基准腾发速率.根 据 FAO 推荐的 FAO-56-PM 公式计算参考作物腾发 量(ET_0). FAO-56-PM 方程以 0.12 m 作为参考作物 高度,气象和湿度的观测高度是 2 m,蒸发潜热 λ = 2.45 MJ/kg,地表阻抗为 70 s/m,地表反射率为 0.23 (Doorenbos and Pruitt, 1975). 计算公式如下:

 $ET_0 =$

$$\frac{0.408\Delta(R_{\rm n}-G) + \gamma \frac{900}{T+273}U_2(e_{\rm s}-e_{\rm a})}{\Delta+\gamma(1+0.34U_2)}, \qquad (2)$$

式中, ET_0 单位为 mm/day; R_n 为植被层净辐射, MJ/m²/day;G为土壤地热通量,MJ/m²·d⁻¹;T为 2 m 高度的平均气温, C; U_2 为 2 m 高度的风速, m/s; e_s 和 e_a 分别为饱和水汽压和实际水汽压, kPa; Δ 为水汽压梯度, kPa/C; γ 为干湿球常数, kPa/C.根据试验站 WATCHDOG 观测的气象要 素计算试验期 ET_0 .

棉花基本作物系数按照 FAO(联合国粮食及农 业组织)推荐方法确定:*ET*。逐日计算,*ET*。应选择一 周或更长时间进行平均.长期灌溉试验研究表明, *ET*。平均值与土壤湿度相关.地表长期连续滴灌条件 下,一个月左右的平均作物系数更为有效(Allen *et al.*,1998).因此,根据当地棉花生育期特点,按照 苗期、蕾期、花铃期和吐絮期分别确定棉花作物系数.

FAO 给定的系数是无覆盖条件的,对于覆膜情况,许多学者做了相关研究(Battikhi and Hill, 1988),由于滴灌和覆膜条件下作物需水量减少,作物基本系数要相应折减.随着棉花生长发育,棵间蒸发逐渐减小,覆膜对棉花影响也逐渐减小,因此Kc逐渐接近于不覆膜情况.按照棵间所占棉田面积的比例计算得到Kc 苗期为FAO的27%,随着棉花发

表 2 覆膜棉花生育期基本作物系数

Table 2Crop coefficients of cotton with film mulch for dif-
ferent growth season

米田	作物系数					
关刑	苗期	蕾期	花铃期	吐絮期		
膜下滴灌	0.1	0.7	0.8	0.6		
FAO(无膜)	0.35	1.15	1.2	0.6		

育, 蕾期为 FAO 的 60%, 花铃期为 FAO 的 66%, 吐絮期与 FAO 的相同(表 2).

根据气象站监测数据,按照上述方法计算得到 本次示踪试验期(7 d)内日平均腾发量为5.7 mm. 2.3.2 不同灌水定额下的纵向湿润锋 为进一步 确定不同灌水量下,土壤水分在灌水期间湿润锋最 大深度和重分布后土壤水分到达的最大宽度,用相 同方法在考虑作物蒸腾条件下继续分析滴头流量为 2.2 L/h,单次灌水4、5、6、8、9 和 14 h 的实测结果, 汇总如表 3.表中最大入渗深度代表灌水后滴头下 最大入渗深度.综上可知,膜下滴灌条件下(一膜一 带四行)土壤湿润体为以滴灌带为中心,向周边扩展 的不规则半圆柱体,最大湿润锋深度和最大扩展距 离随着灌水定额增大而增大.

滴头流量为 2.2 L/h 持续灌水,9 h 最大湿润锋 达到 80 cm,14 h 后发生明显深层渗漏.应用水量均 衡法验证灌水 14 h 后水均衡要素情况,结果如表 4 所示.由于研究区内地下水位较高(生育期内水位埋 深 147~160 cm),为确保不发生深层渗漏,单次最 大灌水量应小于 69.8 mm.

2.3.3 不同定额下的横向扩展距离

横向扩展距离代表实测土壤水分重分布后水平 方向最大入渗宽度,该宽度内 0~60 cm 深度土壤含 水量均有不同程度提高.当然,重分布会受到蒸发蒸 腾作用的影响.表 3 显示:有作物条件下灌水 4 h,经 历土壤水分重分布后,扩展距离为 28 cm,略小于染 色试验中无作物条件下的横向30 cm.原因是试验

表 3 不同灌水定额水分入渗范围

Tabl	е З	The	infi	ltration	characters	of	different	irrigation	quotas
									1

灌水量 (mm)	19.9	24.5	29.4	37.5	43.5	69.8
灌水时间 (h)	4	5	6	8	9	14
湿润锋深度 max (cm)	45	48	58	65	80	150 左右
扩展距离 max (cm)	28	37	46	62	73	大于 75

表 4 定额 69.8 mm 水量均衡(深度 0~160 cm)

Table 4 Water balance for irrigation quota of 69.8 mm (0-160 cm)

灌水量	腾发量	灌前剖面	灌后剖面	剖面储水	渗漏量	有效灌水
(mm)	(mm)	储水量(mm)	储水量(mm)	变化量(mm)	(mm)	比例(%)
69.8	5.7	420	460	40	24.1	65.5

阶段该湿润深度(20~40 cm)内根系发育,蒸腾作用 较强.从表3看出:灌水时间越长,湿润锋越深,横向 扩展距离越大,横向扩展速率逐渐接近无作物小区 (8 cm/h).灌水 69.8 mm 情况下扩展距离大于 75 cm,这样在两滴灌带的膜间形成水分交汇,使膜 间含水量升高.

灌水定额大于 24.5 mm 的横向扩展距离均大 于 35 cm(满足内行棉花需水),横向扩展距离应满 足外行棉花(45 cm)需水要求;因此,从土壤水合理 利用角度考虑,满足研究区现行种植模式(一膜一带 四行)和壤质砂土的单次合理灌水量应在 29.4~ 69.8 mm 之间.为对灌水量进行科学调控,需要结 合棉花不同生育期的根系发育特征和相应时期气候 条件,基于试验结果采用合理可信的数学模型精细 设计灌溉方案.

3 结论与建议

(1)染色示踪能直观表征土壤水盐运移的轨迹, 结果显示:膜下滴灌条件下(一膜一带四行)土壤湿 润体为以滴灌带为中心,向周边扩展的不规则半圆 柱体,垂直滴灌带方向土壤剖面湿润面呈点源入渗 形态,平行滴灌带方向土壤剖面形成近似线源入渗 形态,平行滴灌带方向土壤剖面形成近似线源入渗 形态,灌水前期,垂直滴灌带方向土壤剖面水分运移 主要呈点源入渗特征,以滴头为中心,沿径向扩散流 动;灌水结束后,土壤水分重新分布,水流形态改变, 径向流动不再明显.在现行灌溉模式下(滴头间距 30 cm,滴头流量 2.2 L/h),壤质砂土湿润锋横向运 移速率约为 8 cm/h.

(2)膜下滴灌对滴头处土体有洗盐效果;但未覆 膜区地表土体出现盐分累积.试验发现覆膜未覆膜 过渡带存在高盐区,建议实际生产中,考虑滴灌引起 的盐分分布情况,让作物在高含水、低盐区域生长, 必要时增加一次大定额灌溉洗盐.

(3)不同定额灌水试验表明:灌水时间越长,湿 润锋越深,横向扩展距离越大,蒸腾作用减弱,横向 扩展速率逐渐接近无作物小区(8 cm/h);从土壤水 合理利用角度考虑,满足研究区现行种植模式(一膜 一带四行)和壤质砂土的单次合理灌水量应在 29.4~69.8 mm之间.

References

- Allen, R. G., Pereira, L. S., Raes, D., et al., 1998. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, Rome.
- Battikhi, A. M., Hill, R. W., 1988. Irrigation scheduling and cantaloupe yield model for the Jordan valley. Agricultural Water Management, 15(2): 177-187. doi: 10. 1016/0378-3774(88)90110-2
- Bogner, C., Schmiedinger, I., Huwe, B., 2011. Rapid estimation of Brilliant Blue concentrations in soil by diffuse reflectance spectroscopy. *Geoderma*, 164(1-2): 95-98. doi:10.1016/j.geoderma, 2011.04.017
- Bogner, C., Wolf, B., Schlather, M., et al., 2008. Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics. *European Journal* of Soil Science, 59(1): 103-113. doi:10.1111/j.1365 -2389.2007.00974. x
- Clothier, B., Scotter, D., Harper, E., 1985. Three-dimensional infiltration and trickle irrigation. *Trans. ASAE*, 28 (2): 497-501.
- Dehghanisanij, H., Yamamoto, T., Rasiah, V., 2004. Assessment of evapotranspiration estimation models for use in semi-arid environments. *Agricultural Water Management*, 64(2): 91–106. doi:10.1016/S0378-3774(03)00200-2
- Doorenbos, J., Pruitt, W. O., 1975. Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper No. 24, Rome.
- He, Y. J., Wang, B. G., Wang, Z. M., et al., 2010a. Study on irrigation scheduling of cotton under mulch drip irrigation with brackish water. *Transactions of the Chinese Society of Agricultural Engineering*, 26(7): 14-20 (in Chinese with English abstract).
- He, Y. J., Jin, M. G., Wang, Z. M., et al., 2010b. Characteristics of cotton root development under mulch drip irrigation and their relationship with soil water and salt distribution. *Geological Journal of China Universities*, 16(1):39-44 (in Chinese with English abstract).

- Houk, E., Frasier, M. S., Schnck, E., 2006. The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas basin. Agricultural Water Management, 85(1-2): 175–183. doi: 10. 1016/j. agwat. 2006. 04. 007
- Karlberg, L., Rockstrom, J., Annandale, J. G., et al., 2007.
 Low-cost drip irrigation—a suitable technology for southern Africa? an example with tomatoes using saline irrigation water. Agricultural Water Management, 89(1 -2): 59-70. doi:10.1016/j.agwat. 2006.12.011
- Northey, J. E., Christen, E. W., Ayars, J. E., et al., 2006. Occurrence and measurement of salinity stratification in shallow groundwater in the Murrumbidgee irrigation area, south-eastern Australia. Agricultural Water Management, 81 (1-2): 23-40. doi: 10. 1016/j. agwat. 2005.04.003
- Wang, B. G., Jin, M. G., He, Y. J., et al., 2010. Field test study on saline water irrigation systems by drip irrigation under plastic film. *Geological Science and Technol*ogy Information, 29(5): 96-101, 111 (in Chinese

with English abstract).

- Wang, K. , 2009. Characterizing heterogeneity of soil water movement by dye infiltration experiments. Science Press, Beijing (in Chinese).
- Wang, K., Zhang, R., Yasuda, H., 2006. Characterizing heterogeneity of soil water movement by dye infiltration experiments. J. Hydrol., 328(3-4): 559-571. doi: 10.1016/j.jhydrol.2006.01.001

附中文参考文献

- 何雨江,汪丙国,王在敏,等,2010a. 棉花微咸水膜下滴灌灌 溉制度的研究. 农业工程学报,26(7):14-20.
- 何雨江,靳孟贵,王在敏,等,2010b. 膜下滴灌棉花根系发育 特征及其与土壤水盐分布的关系. 高校地质学报,16 (1):39-44.
- 汪丙国, 靳孟贵,何雨江,等, 2010. 微咸水膜下滴灌灌溉制度 试验研究. 地质科技情报, 29(5):96-101, 111.
- 王康,2009.多孔介质非均匀流动显色示踪技术与模拟方法. 北京:科学出版社.