doi:10.3799/dqkx.2012.S1.018

GPR,GPS 与 GIS 支持下的冰川厚度及冰储量 分析:以天山博格达峰黑沟 8 号冰川为例

王璞玉1,李忠勤1,2,吴利华3,李慧林1,王文彬1,金 爽1,周 平1

1. 中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室,天山冰川站,甘肃兰州 730000

2. 西北师范大学地理与环境科学学院,甘肃兰州 730070

3. 西南林业大学生态旅游学院,云南昆明 650224

摘要:本研究以天山博格达峰黑沟 8 号冰川为例,基于 2009 年探地雷达(GPR)冰川厚度测量资料以及高精度 RTK-GPS (全球定位系统)定位数据,在地理信息系统(GIS)技术的支持下,开展了冰川厚度分布、冰储量分析及其变化特征研究.结果 表明,黑沟 8 号冰川冰舌平均厚度为 58.7 m,冰储量为 115.1×10⁶ m³,相当于水量 103.5×10⁶ m³;1986—2009 年,冰舌平均 减薄 13±6 m,年均减薄约 0.57±0.26 m,冰储量亏损达(25.5±11.8)×10⁶ m³((22.9±10.6)×10⁶ m³ 水当量),是该区气温 显著升高的结果.相比反距离加权法和径向基函数法,普通克里格法插值精度较高(计算误差均值:-0.1665;误差均方根: 2.822),更适合于黑沟 8 号此类山地冰川的厚度分布研究;该冰川减薄速率与中国西部典型监测冰川近几十年的变化基本保 持一致.本项研究将 GPR、GPS 和 GIS 技术综合运用于冰川学领域,可以有效解决数据获取、精确定位、空间分析等一系列问题,具有广阔的应用前景.

关键词:冰川厚度;冰储量;黑沟 8 号冰川;冰川地质;环境工程. 中图分类号: P343.6 文章编号: 1000-2383(2012)S1-0179-09 收

收稿日期: 2011-09-05

Ice Thickness and Volume Based on GPR, GPS and GIS: Example from the Heigou Glacier No. 8, Bogda-Peak Region, Tianshan, China

WANG Pu-yu¹, LI Zhong-qin^{1,2}, WU Li-hua³, LI Hui-lin¹, WANG Wen-bin¹, JIN Shuang¹, ZHOU Ping¹

1. State Key Laboratory of Cryospheric Sciences, Tianshan Glaciological Station, Cold and Arid Region Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

2. College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China

3. Faculty of Ecotourism, Southwest Forestry University, Kunming 650224, China

Abstract: In support of GIS (geographical information system) technology, this study takes Heigou glacier No. 8, Bogda-peak region, Tianshan as an example to analyze ice thickness, ice volume and their changes, based on GPR(ground penetrating radar) ice thickness data and high accuracy RTK-GPS(global positioning system) surveying data in 2009. Results indicate that the mean ice thickness in the tongue of Heigou glacier No. 8 is 58, 7 m with the ice volume of 115.1×10^6 m³(103.5×10^6 m³ water equivalent). During 1986–2009, the ice tongue thinned by 13 ± 6 m, with the mean thinning rate of 0.57 ± 0.26 m · a⁻¹, corresponding to the loss in ice volume of (25.5 ± 11.8) × 10^6 m³((22.9 ± 10.6) × 10^6 m³ water equivalent), which directly resulted from the rapid increase in temperature. By comparison of IDW (inverse distance weighted), RBF (radial basis functions) and OK (ordinary kriging) interpolation methods, the precision of OK interpolation method is higher (Mean: -0.1665; RMS; 2.822), suitable to the study of ice thickness of the mountain glaciers, such as Heigou glacier No. 8. Moreover, the thinning rate of GPR, GPS and GIS technology in the field of glaciology can effectively facilitate the data capture, precise positioning, and spatial analysis, which has a promisting prospect for multi-applications.

基金项目:国家重点基础研究发展计划(No. 2010CB951003);中国科学院知识创新工程重要方向项目(No. KZCX2-YW-127);国家自然科学基金项目(Nos. 40631001, 40701034, J0630966, 41001040, 41101066).

作者简介:王璞玉(1983-),女,助理研究员,主要从事冰川变化与环境研究. E-mail. wangpuyu@lzb. ac. cn

Key words: ice thickness; ice volume; Heigou glacier No. 8; glacial geology; environmental engineering.

在全球变暖的背景下,极地冰盖和山岳冰川快速消融,物质严重亏损、冰川末端持续退缩、冰储量不断减少,已受到世界各国政府和科学家的普遍关注(姚檀栋等,2004;刘时银等,2006;Paul et al.,2007;张海军等,2007;Koch et al.,2009;李宗省等,2009,2010;李忠勤等,2010;Wang et al.,2011).我国西部干旱与半干旱地区分布着22240条山岳冰川,是人类社会赖以生存和发展的"固体水库",冰川的加速消融直接影响水资源的时空演化和利用(刘潮海等,1999;康尔泗等,2002).

在冰川变化研究中,冰川面积、长度、厚度及储 量是4个主要的表述参数,其中面积和长度可利用 地形图、遥感等方法相对容易获得,而直接反映冰川 水资源的冰储量,其估算的核心问题就是冰川厚度 的测量.对冰川厚度和储量的分析研究一直备受关 注,国外有关研究已较为成熟(Farinotti et al., 2009; Fischer, 2009), 国内也取得了许多重要成果 (张祥松等,1985;孙波等,2003;李忠勤等,2007b; 王璞玉等,2011b),但随着技术手段的不断进步,更 为合理、有效地开展冰川厚度、冰储量分析及其变化 研究显得十分迫切与必要. GPR、GPS 和 GIS 技术 的不断成熟和完善,给我们提供了一种解决问题的 新思路. GPR 具有良好穿透能力及无损性,越来越 多地被应用于冰川学领域(Shean and Marchant, 2010),以此获取到高精度冰厚数据;GPS 凭其全天 候、不受任何天气的影响、高精度、快速、省时、高效 等优点,可以对雷达探测实时定位(李天文,2003); GIS用于采集、模拟、处理、检索、分析和表达地理空 间数据的计算机信息系统,具有独特的地理空间信 息处理优势(汤国安和杨昕,2006;杜军等,2010).将 这3种技术有机结合,可以高效推动冰川厚度、冰储 量分析及其变化特征研究.

博格达峰地区是天山东部最大的冰川作用区, 该区冰川及其变化直接影响到流域水资源、人居环 境等,一直备受国内外学者的关注.中日联合考察队 于 20 世纪 80 年代初对该区开展了考察研究工作 (伍光和等,1983a,1983b). 2009 年 8 月天山冰川站 科考人员又对该区进行了大规模科学考察,对黑沟 8 号冰川开展了高分辨率 GPR 冰厚探测及高精度 差分 GPS 冰川测量工作.本研究以该冰川为例,基 于雷达测厚资料和定位数据,在 GIS 技术的支持 下,对冰川厚度分布及冰储量进行详细分析,并在此 基础上开展变化特征研究,以期为流域水资源评估 提供重要参考.

1 研究区概况

博格达峰地区是天山东部最大的冰川作用区, 分布有 113 条现代冰川, 总面积 101. 42 km², 绝大 多数冰川的规模都很小,分别位于北坡的三工河、四 工河、甘河子沟和白杨河,以及南坡的古班博格达 河、黑沟、阿克苏河等河流源头.其中,南坡有59条 冰川,总面积56.60 km²,占博格达峰地区冰川条数 的 52%和面积的 56%(王银生和仇家琪,1983;王宗 太,1991). 据中国冰川编目(施雅风,2005), 黑沟 8 号冰川(43°46′N, 88°23′E)位于天山博格达峰南 坡,冰川编码为5Y813B0008,是一条典型的山谷冰 川,属雪崩补给类型,冰舌狭长,朝向为南(图1).根 据 1962 年地形图,黑沟 8 号冰川面积为5.71 km², 全长 7.1 km,介于海拔 3 380~5 445 m. 博格达山脉 两侧盆地冬季受强大的蒙古冷高压控制,寒冷而干 燥.夏季高空盛行西风环流,具有典型的中纬西风带 大陆性气候特征. 气温年较差和日较差大,降水量少 而变率大,且集中分布在夏季.风沙地貌发育,河网 稀疏,地表径流贫乏,植被类型及植物种属不多,呈 现荒漠景观特征(伍光和等,1983a).

2 数据与方法

2.1 数据

2.1.1 GPR 冰川厚度数据获取 探地雷达(GPR) 的基本原理是向地下发射脉冲形式的高频电磁波, 当电磁波在地下介质传播过程中遇到存在电性差异 的目标体时,就反射回地面,并由天线接收,再通过 处理得到二维雷达图像.由于冰川与岩石之间存在 介电性质的巨大差异,因此在雷达图像中可以通过 识别冰一岩界面从而获取测点位置的厚度值.

2009 年 8 月采用加拿大 SSI 公司的 pulseEKKO-PRO 100A 增强型探地雷达对黑沟 8 号冰川海拔 3 900 m 以下冰舌进行了厚度测量,由于冰川上部地 势陡峭,所以未在此处开展测厚工作.此次测量在冰 舌区共均匀布设了 5 条测线,包括 4 条横测线和 1 条 纵测线,总共 907 个测点,以期较为客观地揭示冰舌

图 1 黑沟 8 号冰川位置 Fig. 1 Location map of Heigou glacier No. 8

图 2 黑沟 8 号冰川雷达测厚路线分布 Fig. 2 GPR measuring lines of Heigou glacier No. 8

区的厚度分布特征(图 2).沿自西向东方向横向探测, 纵向自海拔较低处起测,由于冰川边缘较为陡峭且分

Fig. 3 Radar image along the sounding transect C1-C2 on Heigou glacier No. 8

布冰裂隙,所以部分测线未能到达.测量过程中选用 中心频率为100 MHz的天线,测量方式采取剖面法, 即在保持接收/发射天线合理间距时,同步移动测量, 天线距和测量点间距均采用4m.对于山地冰川,雷达 波传播速度一般在0.167~0.171 m•(ns)⁻¹之间,本 研究测量波速取0.169 m•(ns)⁻¹.各测线雷达图像 冰一岩界面十分清晰(图3),利用探地雷达配套的图 像处理软件能够准确判读各测点的厚度.通过评价, 雷达测厚的相对误差约为1.18 %,在冰川学精度要 求范围内(孙波等,2003). 2.1.2 GPS 定位数据 2009 年雷达探测的同时, 使用北京合众思壮 E650 型 GPS 在黑沟 8 号冰川同 步开展了动态 RTK(real time kinematic)测量,即载 波相位差分技术,是目前 GPS 测量中精度最高的一 种定位方法,实时可达到厘米级定位精度,完全满足 冰川表面测量的精度要求(上官冬辉,2007).测量过 程中,GPS 接收机架设在冰川末端附近作为基准 站,其余的接收机则由人工移动对冰川边界以及雷 达测点定位,获得数据的误差为 0.10~0.30 m (Rivera *et al.*,2005).GPS 原始测点为 WGS84 坐 标,处理过程中使用软件 LandTop2.0.5.1 将其转 化为 BJ54 坐标,基准点取黄海平均海平面,即青岛 零点.转换过程中采用的是 7 参数转换模型,其误差 <0.002 m(王解先等,2003).

2.2 研究方法

本研究在 GIS 常用软件 ArcGIS 的支持下进 行,其涵盖诸多空间分析功能,提供了一个优越的工 作平台.将雷达测厚数据导入软件中,建立.shp 文 件,以冰川厚度作为一个重要的属性值,确定冰川边 界并设定其厚度值为0,统一坐标系为BJ54.对冰川 厚度数据检查并分析,进行数据分布检验、全局趋势 分析等内容,检查其是否服从正态分布、有没有趋势 分析等内容,检查其是否服从正态分布、有没有趋势 效应、各向异性等.基于此检验结果,选取反距离加权 法,径向基函数法和普通克里格法,对各种半变异函 数模型和插值模型分析研究;并使用 Cross-Validation 进行交叉验证,对比这3种空间插值结果,从而选择 最优方法分析黑沟8号冰川冰舌区的厚度分布特征, 并结合三维分析模块对冰储量作进一步研究.

2.2.1 反距离加权法 反距离加权插值方法(inverse distance weighted,简称 IDW)是一种最常用的点插值方法,于 20 世纪 60 年代末提出,它以插值点与样本点间的距离为权重进行加权平均,具有相对简单、操作便利等特点.可以用下式表示:

$$H = \sum_{i=1}^{n} \frac{H_i}{D_i^p} / \sum_{i=1}^{n} \frac{1}{D_i^p}$$

式中:H为待估计的冰川厚度栅格值;H_i为邻域范 围内第i个采样点的冰川厚度值;n为用于厚度数 据插值的雷达测点的个数;D_i为待插值点离第i个 雷达测点的距离;p为指数值.样点在预测点值的计 算过程中所占权重的大小随采样点与预测值之间距 离的增加按指数规律减少(侯景儒等,1998).

2.2.2 径向基函数法 径向基函数法(radial basis functions,简称 RBF)是一种函数插值法,它内插所 得表面必须经过各个已知样点,又使表面的总曲率

最小,属人工神经网络方法中的一种(师华定等, 2008). ArcGIS软件提供了不同的径向基函数,可以 根据需要选择合适的函数进行插值使径向基表面通 过一系列已知样点.

2.2.3 普通克里格法 普通克里格法(ordinary kriging,简称OK)是克里格方法的一种,建立在地统计学基础上,用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量进行线性无偏最优估计.

3 结果与分析

3.1 不同方法插值结果比较

将 IDW、RBF 和 OK 冰川厚度插值结果与实测 值进行比较,计算误差均值(MEAN)和误差均方根 (RMS),结果如表1所示.一般来说,插值方法的 MEAN 和 RMS 总体最小则具有较好的插值效果, 尤其是 RMS 越小越好. 由表 1 可知,误差均值 MEAN 的排序为 RBF>IDW>OK;误差均方根 RMS 的排序为 IDW>RBF>OK. 对这 3 种厚度插 值结果进行验证发现,普通克里格法的 MEAN 和 RMS 最小,分别为一0.1665和2.822;该方法充分 考虑了区域化变量的特性,具有相对较好的插值精 度且数据最为平滑(图 4),因此更适用于黑沟 8 号 冰川的厚度分布特征研究.目前,该种方法已被广泛 应用于土壤科学、气候变化等研究领域(姜勇等, 2006;刘劲松等,2009).相比之下,IDW的插值结果 更易受数据点集的影响,常出现孤立点数据明显高 于周围数据点的情况.虽然 RBF 比 IDW 更加灵活, 有更多的参数可供调整,但该方法对径向基函数及 参数的选取只能凭经验,没有系统的理论,对此有必 要开展进一步的研究.

3.2 冰川厚度分布及冰储量分析

分析显示,黑沟 8 号冰川厚度插值采用普通克 里格方法效果最佳,将插值结果转化为 5 m×5 m 的 栅格空间数据库,并绘制出梯度为 20 m 的冰川厚度 等值线,如图 4 所示.黑沟 8 号冰川冰舌厚度分布总 体呈中部深厚、上下两端浅薄的格局.自冰川末端向 上,冰厚呈现阶梯状变化过程,沿主流线方向冰体厚 度最大,这 与冰川动力学理论相一致(孙波等, 2003).冰厚等值线形成明显的"两大三小"深色闭合 区域,说明在这几个部位冰体厚度最大,冰床存在凹 陷地形,冰川动力过程对基岩产生了强烈侵蚀.黑沟 8 号冰川冰厚分布与乌鲁木齐河源1号冰川相似,

Table 1Comparison of ice thickness using different interpolation methods插值方法参数模型误差均值(MEAN)误差均方根(RMS)

表 1 冰川厚度不同方法插值结果比较

	 插值万法	参奴榠型	误差均值(MEAN)	误差均万根(RMS)
Ì	反距离加权法(IDW)	指数为2	-0.7850	7.663
	径向基函数法(RBF)	函数参数为 35.715	-0.8002	6.795
	普通克里格方法(OK)	—	-0.1665	2.822

且均呈现典型的槽谷特征(图 3),一系列凹陷地形 结构表征了冰川和冰坎溯源后撤的演化过程,支持 冰川槽谷"溯源延伸"的演化模式(Linton, 1963; Paterson, 1994;孙波等,2003).

基于插值结果可以计算冰川平均厚度,即

$$\overline{H}=\sum_{i=1}^n H_i/n$$
 ,

式中: H_i 为第i 个像元的厚度值;n 为像元的个数. 结果表明,黑沟 8 号冰川冰舌(面积:1.96 km²)厚度 介于 0~178 m 之间,平均冰厚 58.7 m,结合图 2 冰 川表面地形,最大冰体厚度位于海拔3630m附近. 采用 ArcGIS 三维分析模块 3D Analyst 计算冰舌区 储量为 115.1×10⁶ m³,折合水当量 103.5×10⁶ m³ (冰密度 0.9×10³ kg • m⁻³). 长期以来,计算冰川 平均厚度时主要采用算数平均法,而这种方法往往 会受到测量剖面以及测量点位置和数量的影响,具 有不确定性.本研究在 GIS 技术的支持下,基于高 精度 GPR 冰川厚度资料和 GPS 精确定位数据计算 平均冰厚及冰储量,精度得到了大大提高,能够为冰 川水资源评估提供可靠依据,与经验公式法相比,该 种方法更具科学性和合理性.但是,由于雷达测量的 难度及冰川数量众多,利用 GPR 不可能对每条冰川 进行探测,因此,冰川厚度资料的获取受到极 大限制.

4 讨论

4.1 冰川厚度变化

雷达探测不仅可以获取高精度冰川厚度数据, 而且在冰川变化研究领域具有很高的应用价值,如 果相隔一定时间,对冰川进行重复雷达探测,通过厚 度差异分析便可以直接表征出冰川在此期间积累与 消融平衡的结果,反映冰川变化的状况.1986 年采 用 B-1 型冰川测厚雷达对黑沟 8 号冰川曾开展过一 次厚度测量(王宗太,1991),此次测量在冰舌区共布 设了 4 条横测线和 1 条纵测线,横测线分别位于海

- 图 4 基于普通克里格法的黑沟 8 号冰川冰舌厚度分布及 1962—2009 年冰川末端变化
- Fig. 4 Ice thickness isoline map of Heigou glacier No. 8 using ordinary kriging interpolation method and the terminus change from 1962 to 2009

拔3780 m、3591 m、3533 m 和3415 m,纵测线沿主 流线方向,雷达实际测量误差仅为1m(张祥松等, 1985).将2009 年最新冰川厚度测量资料与其相结 合,通过对比进一步分析黑沟8号冰川1986—2009 年的厚度变化情况,并随机选取了100个雷达测厚 点与所建冰厚图层上的同名点进行比较来评估误 差.结果表明,过去的23 a 间,黑沟8号冰川冰舌平 均减薄13±6 m,年均减薄0.57±0.26 m,由冰川减

Xale III	位置	末端 海拔 (m)	厚」	度变化	面积至	变化	末端	变化	March 1. L. Mart
名称			时间段	年均减薄 (m·a ⁻¹)	时间段	年均 (km ² .a ⁻¹)	时间段	年均 (m·a ⁻¹)	资料来源
黑沟8号 冰川	43°46'N, 88°23'E	3 380	1986—2009	0.57±0.26 (冰舌)	1962—2009	-0.002 (冰舌)	1962—2009	-11.0	本研究
白鱼十文			36 1981—2006	0 40 0 72	0.72 中轴 1962—2006 -0.00 面)	-0.006	1959—1993	-4.5	
与音小介 河源1号	43°06'N, 86°49'E	N, 3736		0.40~0.72 (东支中轴 线剖面)			5 1993—2004	-3.5(东支)	李忠勤等, 2007a
1/1/1								-5.8(西支)	
科其喀尔 冰川	41°49'N, 80°10'E	3 060	1981—2004	0.5~1.5 (冰舌)	-	-	1974—2004	-12.7	谢昌卫等, 2006
哈密庙尔 沟冰川	43°03'N, 94°19'E	3 840	1981—2005	0.21 (海拔4 295~ 4 357 m)	-	-	-	-	李忠勤等, 2007b
海螺沟 冰川	29°36'N, 101°57'E	2 910	1966—2009	1.1 ± 0.4	=	-	-	-	Zhang <i>et al.</i> , 2010

表2 我国西部典型监测冰川近几十年变化比较

Table 2 Comparison of the changes of the typical monitored glaciers in western China in recent years

薄造成的冰量亏损达(25.5±11.8)×10⁶ m³,即黑 沟 8 号冰川至少提供(22.9±10.6)×10⁶ m³ 的融水 补给量.野外观测发现,冰川积累区有基岩出露现 象,冰川的厚度发生了大幅度减小,整条冰川均处于 减薄状态.冰川厚度迅速减薄的同时,末端急剧退 缩、面积大幅缩小. 笔者结合 1962 年航摄绘制的地 形图,发现该冰川自 1962 年到 2009 年,面积由 5.71 km² 缩减到 5.63 km², 缩小了 1.3 %, 末端平 均退缩率为11.0 m • a⁻¹. 由于该冰川冰舌狭长,末 端海拔低,因此变化主要发生在冰川末端,以厚度减 薄和退缩为主.李忠勤等(2010)利用遥感和地面验 证的方法研究了博格达南坡的冰川变化特征,分析 显示,所研究的104条冰川1962-2006年总面积缩 小了 25.3%,平均每条冰川缩小 0.198 km²,末端退 缩速率为4.5m·a⁻¹,冰川萎缩强度与该区坎儿井 水量减少有密切关系.与博格达南坡冰川整体变化 相比,黑沟8号冰川面积缩小及末端退缩速率均相 对较大,这与其具有绵长冰舌、末端海拔相对较低 (3 380 m)有直接关系,因为通常海拔越低,所处气 温较高,冰川消融越快.

4.2 冰川变化的气候背景

冰川变化是气候变化的必然结果,在气象要素中,气温和降水与其关系最为紧密.天山天池气象站位于天山天池主景区大天池湖北坡(43°53′N,88°07′E,海拔1943m),是距离黑沟8号冰川最近的一个国家气象站,位于该冰川西北方向,可通过分析该气象站的数据资料研究区域气候对黑沟8号冰川的影响.马洪亮等(2010)利用该气象站1956—2007年的逐日气候资料详细分析了天山天池的气

候变化特征,结果显示:近49 a 来该区平均气温呈 上升趋势,增温率为0.18 °C • (10 a)⁻¹,与近几十 年来全国乃至整个天山山区的增温趋势一致,最低 气温的升高对天山天池增温的贡献最大,升幅均超 过了平均气温和最高气温;降水呈增多的趋势,5 a 滑动平均序列倾向率为14.11 mm • (10 a)⁻¹, 1962—1976年和1995—2001年降水量偏少,其他 时段偏多.据此估计,黑沟8号冰川厚度减薄、末端 退缩、面积缩小及冰储量亏损与该区近年来气温快 速上升有直接关系,气温升高导致冰川表面消融加 快,尽管此间降水亦有增加,但未能扭转冰川物质亏 损的趋势.

4.3 与我国西部典型监测冰川对比

为了进一步研究黑沟 8 号冰川厚度等变化特 征,将其与我国西部典型监测冰川作比较(表 2)发 现,近几十年我国西部典型监测冰川均处于迅速减 薄状态.相比之下,黑沟8号冰川与乌鲁木齐河源1 号冰川、科其喀尔冰川的减薄速率相差不大,稍大于 哈密庙尔沟冰川,但均明显小于海螺沟冰川.这种差 异与冰川类型有直接关系.黑沟8号冰川、乌鲁木齐 河源1号冰川、科其喀尔冰川和哈密庙尔沟冰川均 为大陆型冰川;而位于我国横断山区的海螺沟冰川 却是典型的海洋型冰川,受西南季风和东南季风两 大气候系统的控制,对气候变化的反应较大陆型冰 川要敏感,气温的微弱降低或升高便可引起冰川的 大幅前进或后退(李宗省等,2009).同为大陆型冰 川的黑沟 8 号冰川,其减薄速率却明显大于哈密庙 尔沟冰川,考虑到黑沟8号冰川为典型的山谷冰川, 具有绵长的冰舌,末端海拔相对较低,相当面积比重 的冰川暴露于强烈消融之中;而哈密庙尔沟冰川为 冰帽,运动速度较慢,相对稳定,且末端海拔较高.与 中国西部典型监测冰川近几十年的变化相比,黑沟 8号冰川厚度减薄速率与其基本保持一致,末端退 缩相对强烈.

5 结论

(1)黑沟 8 号冰川冰舌厚度集中分布在 0~ 178 m之间,平均厚度 58.7 m,冰储量为 115.1× 10⁶ m³,折合水当量 103.5×10⁶ m³.1986—2009 年,黑沟 8 号冰川冰舌平均减薄 13±6 m,年均减薄 约 0.57±0.26 m,由此造成的冰量亏损达(25.5± 11.8)×10⁶ m³,即黑沟 8 号冰川消融对河川径流的 补给至少为(22.9±10.6)×10⁶ m³.黑沟 8 号冰川 减薄速率与中国西部典型监测冰川近几十年的变化 基本保持一致,末端退缩相对强烈.黑沟 8 号冰川对 区域冰川的变化情况具有一定代表性,标志着博格 达峰地区的冰川正处于物质严重亏损状态,直接影 响到流域水资源状况.

(2)插值对比分析可知,基于地统计的普通克里格法充分考虑了区域化变量的特性,能够较好的模拟冰川厚度的空间连续分布格局,在空间上更为合理,相比反距离加权法和径向基函数法,插值的精度较高,计算误差均值(MEAN)和误差均方根(RMS)分别为一0.1665和2.822,更适合黑沟8号冰川此类山地冰川的厚度分布研究.与传统方法相比,基于GIS方法计算冰储量精度较高.

(3)本研究将 GPR、GPS 和 GIS 技术综合运用 在冰川学领域,提供了一种新的解决问题的方法. GPR 是一种获取信息和进行数据采集更新的重要 手段;GPS 可以准确获取空间三维位置信息;GIS 则具有强大的地理空间信息处理优势.将这 3 种技 术有机结合,有效解决了数据获取、定位、空间分析 等一系列问题,在空间信息技术日益发展的今天,具 有十分可观的应用前景.

致谢:本研究所采用的 2009 年资料是博格达峰 地区考察队全体队员艰辛工作的结果,在此对参加 此项工作的所有人员表示感谢!

References

Du, J., Yang, Q. H., Yan, J., et al., 2010. Hazard evaluation of secondary geological disaster based on GIS and information value method. *Earth Sciences—Journal of Chi-* na University of Geosciences, 35(2): 324-330 (in Chinese with English abstract).

- Farinotti, D., Huss, M., Bauder, A., et al., 2009. A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. *Journal of Glaciology*, 55 (191): 422-430. doi:10.3189/002214309788816759
- Fischer, A. , 2009. Calculation of glacier volume from sparse ice-thickness data, applied to Schaufelferner, Austria. *Journal of Glaciology*, 55 (191): 453 - 460. doi: 10. 3189/002214309788816740
- Hou, J. R., Yin, Z. N., Li, W. M., et al., 1998. The applied geostatistics. Geological Publ. House, Beijing (in Chinese).
- Jiang, Y., Li, Q., Zhang, X. K., et al., 2006. Kriging prediction of soil zinc in contaminated field by using an auxiliary variable. *Chinese Journal of Applied Ecology*, 17 (1):97-101 (in Chinese with English abstract).
- Kang, E. S., Cheng, G. D., Dong, Z. C., 2002. Glacier-snow water resources and mountain runoff in the arid area of Northwest China. Science Press, Beijing (in Chinese).
- Koch, J., Mennounos, B., Clague, J. J., 2009. Glacier change in Garibaldi Provincial Park, southern coast mountains, British Columbia, since the little ice age. *Global and Planetary Change*, 66(3-4):161-178. doi:10.1016/ j. gloplacha. 2008. 11.006
- Li, T. W., 2003. Theory and application of GPS. Science Press, Beijing (in Chinese).
- Li,Z. Q., Shen, Y. P., Wang, F. T., et al., 2007a. Response of glacier melting to climate change—take Urumqi glacier No. 1 as an example. *Journal of Glaciology and Geocryology*, 29(3):333-342 (in Chinese with English abstract).
- Li,Z. Q., Wang, F. T., Zhu, G. C., et al., 2007b. Basic features of the Miaoergou flat-topped glacier in east Tianshan Mountains and its thickness change over the past 24 years. *Journal of Glaciology and Geocryology*, 29 (1):61-65 (in Chinese with English abstract).
- Li,Z. Q., Li,K. M., Wang, L., 2010. Study on recent glacier changes and their impact on water resources in Xinjiang, North Western China. *Quaternary Sciences*, 30 (1):96-106 (in Chinese with English abstract).
- Li,Z. X., He, Y. Q., Wang, S. J., et al., 2009. Changes of some monsoonal temperate glaciers in Hengduan Mountains region during 1900-2007. Acta Geographica Sinica, 64(11): 1319-1330 (in Chinese with English abstract).
- Li,Z, X., He,Y. Q., Wen,Y. H., et al., 2010. Response of runoff in high altitude area over the typical Chinese monsoonal temperate glacial region to climate warming. *Earth Sci*-

ences—Journal of China University of Geosciences, 35 (1):43—50 (in Chinese with English abstract).

- Linton, D. L., 1963. The forms of glacial erosion. Institute of British Geographers Transactions, Blackwell Publishing, London, 33:1-28.
- Liu, C. H., Kang, E. S., Liu, S. Y., et al., 1999. A study of arid land glacier changes and its impact on the runoff in the northwest. *Science in China* (*Ser. D*), 29 (Suppl. 1):55-62 (in Chinese).
- Liu, J. S., Chen, H., Yang, B. Y., et al., 2009. Comparison of interpolation methods on annual mean precipitation in Hebei Province. Acta Ecologica Sinica, 29(7): 3493-3500 (in Chinese with English abstract).
- Liu, S. Y., Ding, Y. J., Li, J., et al., 2006. Glaciers in response to recent climate warming in western China. *Quaternary Sciences*, 26(5):762-771 (in Chinese with English abstract).
- Ma, H. L., Ma, Y., Xue, F. M., 2010. Variation characteristics of climate change at Tianchi in Tianshan Mountains in recent 49 years. *Meteorological Science and Technology*, 38 (2):209-213 (in Chinese with English abstract).
- Paterson, W. S. B. , 1994. The physics of glacier (Third Edition). Pergamon Press, Oxford.
- Paul, F., Kääb, A., Haeberli, W., 2007. Recent glacier changes in the Alps observed by satellite: consequences for future monitoring strategies. *Global and Planetary Change*, 56(1-2):111-122. doi:10.1016/j.gloplacha. 2006.07.007
- Rivera, A., Casassa, G., Bamber, J. L., et al., 2005. Ice elevation changes of Glaciar Chico, southern Patagonia, using ASTER DEMs, aerial photographs and GPS data. *Journal of Glaciology*, 51 (172): 105 - 112. doi: 10. 3189/172756505781829557
- Shangguan, D. H., 2007. Glacier changes in Tarim interior river basin using 3S cold and arid regions environmental and engineering research institute. Chinese Academy of Sciences, Lanzhou (in Chinese).
- Shean, D. E., Marchant, D. R., 2010. Seismic and GPR surveys of Mullins glacier, McMurdo dry valleys, Antarctica; ice thickness, internal structure and implications for surface ridge formation. *Journal of Glaciology*, 56 (195):48-64. doi:10.3189/002214310791190901
- Shi, H. D., Gao, Q. X., Zhuang, D. F., et al., 2008. Using RBFN model and GIS technique to assess wind erosion hazard in Inner Mongolia, *Research of Environment Sciences*, 21(5): 129–133 (in Chinese with English abstract).
- Shi, Y. F. ,2005. Brief of glacier inventory of China. Shanghai Popular Science Press, Shanghai (in Chinese).

- Sun, B., He, M. B., Zhang, P., et al., 2003. Determination of ice thickness, subice topography and ice volume at glacier No. 1 in the Tianshan, China, by ground penetrating radar. *Chinese Journal of Polar Research*, 15(1):35-44 (in Chinese with English abstract).
- Tang, G. A., Yang, X., 2006. The experimental guide to spatial analysis of geographic information system based on ArcGIS. Science Press, Beijing (in Chinese).
- Wang, J. X., Wang, J., Lu, C. P., 2003. Problem of coordinate transformation between WGS-84 and BEIJING54. Journal of Geodesy and Geodynamics, 23(3):70-73 (in Chinese with English abstract).
- Wang, P. Y., Li, Z. Q., Gao, W. Y., 2011a. Rapid shrinking of glaciers in the middle Qilian Mt. region of Northwest China, during the last ~ 50 years. Journal of Earth Science, 22(4):539-548.
- Wang, P. Y., Li, Z. Q., Li, H. L., 2011b. Ice volume changes and their characteristics for representative glacier against the background of climatic warming—a case study of Urumqi glacier No. 1, Tianshan, China. Journal of Natural Resources, 26(7):1189-1198 (in Chinese with English abstract).
- Wang, Y. S., Qiu, J. Q., 1983. Distributive features of the glaciers in Bogda region, Tian Shan. Journal of Glaciology and Geocryology, 5(3):17-24 (in Chinese with English abstract).
- Wang, Z. T., 1991. A discussion on the questions of development of Heigou glacier No. 8, Bogda-peak region. Journal of Glaciology and Geocryology, 13(2): 141-158 (in Chinese with English abstract).
- Wu, G. H., Ageta, Y., Qiu, J. Q., 1983a. Physical geographic features and climate conditions of glacial development in Bogda area, Tianshan. *Journal of Glaciology and Geocry*ology, 5(3):5—16 (in Chinese with English abstract).
- Wu,G. H., Zhang, S. Y., Wang, Z. X., 1983b. Retreat and advance of Modern glaciers in Bogda, Tianshan. *Journal* of Glaciology and Geocryology, 5(3): 143-152 (in Chinese with English abstract).
- Xie, C. W., Ding, Y. J., Liu, S. Y., et al., 2006. Variation of Keqikaer glacier terminus in Tomur Peak during last 30 years. *Journal of Glaciology and Geocryology*, 28(5): 672-677 (in Chinese with English abstract).
- Yao, T. D., Liu, S. Y., Pu, J. C., et al., 2004. Recent glacial retreat in high-Asia in China and its impact on water resources in Northwest China. *Science in China (Series* D),34(6):535-543 (in Chinese).
- Zhang, H. J., Wang, X. L., Ding, L., et al., 2007. Carbonate diagenesis controlled by glacioeustatic sea-level chan-

ges: a case study of the Carboniferous-Permian boundary section at Xikou, Zhen'an County, Shaanxi Province, China. *Earth Sciences—Journal of China University* of Geosciences, 32(3): 329—338 (in Chinese with English abstract).

- Zhang, X. S., Zhu, G. C., Qian, S. L., et al., 1985. Radar measuring ice thickness of No. 1 glacier at the source of Urumqi River, Tianshan. *Journal of Glaciology and Geocryology*,7(2):153-162 (in Chinese with English abstract).
- Zhang, Y., Fujita, K., Liu, S. Y., et al., 2010. Multi-decadal icevelocity and elevation changes of a monsconal maritime glacier: Hailuogou glacier, China. *Journal of Glaciology*, 56(195):65-74. doi:10.3189/002214310791190884

附中文参考文献

- 杜军,杨青华,严嘉,等,2010.基于 GIS 与信息量模型的汶川 次生地质灾害危险性评价.地球科学——中国地质大 学学报,35(2):324-330.
- 侯景儒,尹镇南,李维明,等,1998. 实用地质统计学. 北京:地 质出版社.
- 姜勇,李琪,张晓珂,等,2006.利用辅助变量对污染土壤锌分 布的克里格估值.应用生态学报,17(1):97-101.
- 康尔泗,程国栋,董增川,2002.中国西北干旱区冰雪水资源 与出山径流.北京:科学出版社.
- 李天文,2003. GPS 原理及应用. 北京:科学出版社.
- 李忠勤,沈永平,王飞腾,等,2007a.冰川消融对气候变化的 响应——以乌鲁木齐河源1号冰川为例.冰川冻土,29 (3):333-342.
- 李忠勤,王飞腾,朱国才,等,2007b.天山庙尔沟平顶冰川的 基本特征和过去 24 a 间的厚度变化.冰川冻土,29(1): 61-65.
- 李忠勤,李开明,王林,2010. 新疆冰川近期变化及其对水资 源的影响研究. 第四纪研究,30(1):96-106.
- 李宗省,何元庆,王世金,等,2009.1900—2007 年横断山区 部分海洋型冰川变化.地理学报,64(11):1319-1330.
- 李宗省,何元庆,温煜华,等,2010.我国典型海洋型冰川区高 海拔区输出水量变化对气候变暖的响应.地球科 学——中国地质大学学报,35(1):43-50.
- 刘潮海,康尔泗,刘时银,等,1999.西北干旱区冰川变化及其 径流效应研究.中国科学(D辑),29(增1):55-62.

- 刘劲松,陈辉,杨彬云,等,2009.河北省年均降水量插值方法 比较.生态学报,29(7):3493-3500.
- 刘时银,丁永建,李晶,等,2006.中国西部冰川对近期气候变 暖的响应.第四纪研究,26(5):762-771.
- 马洪亮,马燕,薛福民,2010. 天山天池近 49 年气候变化特征. 气象科技,38(2): 209-213.
- 上官冬辉,2007. 基于 3S 的塔里木河流域冰川变化应用研 究. 兰州:中国科学院寒区旱区环境与工程研究所.
- 师华定,高庆先,庄大方,等,2008. 基于径向基函数神经网络 (RBFN)的内蒙古土壤风蚀危险度评价. 环境科学研 究,21(5): 129-133.
- 施雅风,2005. 简明中国冰川目录. 上海:上海科学普及 出版社.
- 孙波,何茂兵,张鹏,等,2003.天山1号冰川厚度和冰下地形 探测与冰储量分析.极地研究,15(1):35-44.
- 汤国安,杨昕,2006. ARCGIS 地理信息系统空间分析实验教 程. 北京:科学出版社.
- 王解先,王军,陆彩萍,2003. WGS-84 与北京 54 坐标的转换 问题.大地测量与地球动力学,23(3):70-73.
- 王璞玉,李忠勤,李慧林,2011b. 气候变暖背景下典型冰川储 量变化及其特征分析——以天山乌鲁木齐河源 1 号冰 川为例. 自然资源学报,26(7): 1189-1198.
- 王银生,仇家琪,1983. 天山博格达峰地区现代冰川分布特征. 冰川冻土,5(3):17-24.
- 王宗太,1991. 博格达峰黑沟 8 号冰川发育若干问题浅析. 冰 川冻土,13(2): 141-158.
- 伍光和,上田丰,仇家琪,1983a. 天山博格达山脉的自然地理 特征及冰川发育的气候条件.冰川冻土,5(3):5-16.
- 伍光和,张顺英,王仲祥,1983b.天山博格达峰现代冰川的进 退变化.冰川冻土,5(3):143-152.
- 谢昌卫,丁永建,刘时银,等,2006.近 30a 来托木尔峰南麓科 其喀尔冰川冰舌区变化.冰川冻土,28(5):672-677.
- 姚檀栋,刘时银,蒲健成,等,2004. 高亚洲冰川的近期退缩及 其对西北水资源的影响. 中国科学(D辑),34(6): 535-543.
- 张海军,王训练,丁林,等,2007.冰川型海平面变化控制下的 台地碳酸盐岩成岩作用:以陕西镇安西口石炭一二叠 系界限剖面为例.地球科学——中国地质大学学报,32 (3):329-338.
- 张祥松,朱国才,钱嵩林,等,1985.天山乌鲁木齐河源1号冰 川雷达测厚.冰川冻土,7(2):153-162.