doi:10.3799/dqkx.2013.001

南海神狐海域水合物钻探区钙质超微化石 生物地层与沉积速率

陈 芳^{1,2},苏 新³,周 洋^{1,2}

1. 广州海洋地质调查局,广东广州 510760

2. 国土资源部海底矿产资源与地质环境重点实验室,广东广州 510760

3. 中国地质大学海洋地质学院,北京 100083

摘要:2007年我国首次在南海北部陆坡神狐海域实施了天然气水合物钻探,并钻取水合物实物样品.为了解钻区地层、水合物产出带(the zone of gas hydrate occurrence)或水合物储层的地层时代以及沉积速率特征,对其中4口钻孔(SH1B、SH2B、SH5C和SH7B)岩心沉积物进行钙质超微化石年代地层学和沉积速率变化的研究.本次工作识别出17个新近纪钙质超微化石事件,确定了神狐钻探所钻达最老地层为新近系上中新统;水合物产出带的地层为上中新统一上新统.这4个钻井地层沉积速率的变化特征因站位和时期而异.中新世以来各地质时期沉积速率差异较大,全新世最高(20~34.16 cm/ka之间),其次为更新世和晚中新世(3.14~5.74 cm/ka),上新世最低(1.88~3.27 cm/ka).此外,水合物产出带地层的沉积速率在各钻孔也有差异,SH2B孔为4.18 cm/ka,SH7B孔为1.88 m/ka.表明南海水合物产出层位沉积速率差异较大,沉积速率与水合物成藏的关系可能比前期的认识更为复杂.

关键词:钙质超微化石地层学;沉积速率;水合物产出带;中新世;神狐钻区;南海. **中图分类号:** P736 **文章编号:** 1000-2383(2013)01-0001-09 **收稿日期:** 2012-03-16

Late Miocene-Pleistocene Calcareous Nannofossil Biostratigraphy of Shenhu Gas Hydrate Drilling Area in the South China Sea and Variations in Sedimentation Rates

CHEN Fang^{1,2}, SU Xin³, ZHOU Yang^{1,2}

1. Guangzhou Marine Geological Survey, Guangzhou 510760, China

2. Key Laboratory of Subseafloor Mineral Resources and Geological Environment, Ministry of Land and Resources, Guangzhou 510760, China

3. School of Marine Geosciences, China University of Geosciences, Beijing 100083, China

Abstract: The first Chinese gas hydrate drilling program was carried out on the Shenhu area in 2007 and obtained gas hydrate samples. In order to understand the strata, age of the zone of gas hydrate occurrence and features of sedimentation rates, Late Miocene to Pleistocene calcareous nanofossil biostratigraphy in 4 holes (SH1B, SH2B, SH5C and SH7B) from the Shenhu gas hydrate drilling area of the northern South China Sea have been studied. A total of 17 Late Miocene to Pleistocene nanofossil events are recognized. The oldest sediments recovered are in an age of late Miocene, younger than 7. 362 Ma, and the age assigned for gas hydrate occurrence zone is late Miocene in Hole SH2B and late Miocene to early Pliocene in Hole SH7B. Sedimentation rates varied with holes and times, increasing from Pliocene, and reaching the highest values in Holocene, for example, 1. 88–3. 27 cm/ ka during Pliocene and 20–34. 16 cm/ka in Holocene, respectively. Sedimentation rates of 1. 88 cm/ ka to 4. 18 cm/ ka were estimated for sediment sequences in gas hydrate occurrence zone. The results suggest that the relationship between sedimentation rates and occurrence of gas hydrates should be more complicated than our earlier knowledge.

基金项目:国家重点基础发展研究规划项目(No. 2009CB219502);国土资源部公益性行业科研基金项目课题(No. 200811014-02-02);国家专项 项目课题(No. GZH2011003050602).

作者简介:陈芳(1966一),女,教授级高级工程师,主要从事微体古生物学和沉积学研究. E-mail: zhchenfang66@21cn. com

Key words: calcareous nannofossil biostratigraphy; sedimentation rate; gas hydrate occurrence zone; Miocene; Shenhu area; South China Sea.

南海北部神狐海域水合物钻探区位于白云凹陷 水深1000~1500 m的陆坡区. 白云凹陷位于珠江 口盆地珠二坳陷,处于南海北部大陆边缘陆坡区,水 深 200~3 000 m,新生代最大沉积厚度超过 11 km, 是珠江口盆地最大的凹陷,为珠江口盆地的沉降和 沉积中心(庞雄等,2008),是南海深水油气、水合物 的主要勘探区.新近纪以来沉积环境演变为陆坡深 水环境,主要发育深水浊积扇、滑塌沉积以及峡谷水 道这3种类型的沉积相(匡增桂和郭依群,2011),巨 厚的深水沉积中含有丰富的海相微体古生物化石. 我国前期在该区的有关地质调查中,发现了大量的 指示天然气水合物存在的地球物理和地球化学标志 (张光学等,2002),有关沉积学的研究也表明,该区 具有良好的天然气水合物成藏沉积条件(苏新等, 2005). 2007 年广州海洋地质调查局(GMGS)首次 在该海域实施"我国海域天然气水合物钻探",并成 功钻取天然气水合物样品(Zhang et al., 2007),钻 取岩心最大深度约 260 m,这也是神狐海域首次获 取的海底以下最长岩心.此航次后我们对所钻取岩 心沉积物中钙质超微化石展开了年代地层学的研 究,确定钻区地层、水合物产出带的地层时代和沉积 速率特征,为钻区的资源评价和今后南海水合物的 勘探提供基础地质依据.

1 取样与方法

1.1 钻孔位置和取样

2007 年广州海洋地质调查局在南海北部陆坡 神狐海域实施"我国海域天然气水合物钻探",租赁 荷兰辉固公司"Bavenit"号钻探船施钻,共钻 8 个站 位,钻孔取样位置和钻探区地形地貌见图 1,本次研 究选择其中 4 口钻孔(SH1B、SH2B、SH5C 和 SH7B)展开研究,其中 SH2B 和 SH7B 获得水合物 实物样品,而 SH1B 和 SH5C 钻孔未发现水合物样 品.鉴于钻探航次实际需要等原因,钻探只在关键和 部分控制层段钻取岩心,取心率相对偏低.因此,航 次后钙质超微化石样品取样间隔差异较大,在钻孔 上部 0~40 m 连续取样的岩心内部按 10 cm 间隔取 样,而不连续取样的岩心取样间隔取决于钻探取心 间隔,在取心段内取样间隔介于 1~5 m 之间,而缺 乏取心的间隔少则 1~2 m,多则达 60 m. SH1B、

- 图 1 南海北部神狐水合物钻探区构造位置(a)及地形地貌 图(b)(据匡增桂和郭依群,2011修改)
- Fig. 1 The location (a) and geography and physiognomy of the gas hydrate sample area in the Shenhu waters, the northern SCS (b)

SH2B、SH5C和 SH7B 孔分别取得 231、71、127 和 183个,共 612个样品进行钙质超微化石分析鉴定.

1.2 样品制作和分析方法

钙质超微化石样品处理依据中华人民共和国国 家标准《海洋地质规范海洋地质地球物理调查》 (GB-T 12763. 8-2007)进行.采用传统的简易涂片法, 用清洁干净的牙签取少许沉积物置于载玻片上,加蒸 馏水,用牙签充分搅拌后,将粗粒沉积物刮去,使细粒 沉积物的悬浮液均匀分布在载玻片上,烤干后,将大 小为22 mm×22 mm的盖玻片用中性树脂胶粘在载

事件	属种(Taxon)	化石带	年龄(Ma)
X	Gephyrocapsa spp. (>3.5 µm)-Emiliania huxleyi		0.063
FO	Emiliania huxleyi	NN21	0.291
LO	Pseudoemiliania lacunosa	NN20	0.436
LCO	Reticulo fenestra asanoi		0.9
RE	Gephyrocapsa spp. ($\geq 4 \mu m$)		1.04
FCO	Reticulo fenestra asanoi		1.078*
LO	Gephyrocapsa spp. ($>5.5 \mu m$)		1.24
LO	Helicosphaera sellii		1.34
FCO	Gephyrocapsa spp. ($>5.5 \mu m$)		1.46
LO	Calcidiscus macintyrei		1.60
FO	Gephyrocapsa spp. ($>5.5 \mu m$)		1.560~1.617*
FO	Gephyrocapsa spp. (>3.5 μ m)	NN19	1.67
LO	Discoaster brouweri	NN18	2.06
AB	Discoaster triradiatus		2.135~2.216*
LO	Discoaster pentaradiatus	NN17	2.393~2.512*
LO	Discoaster surculus	NN16	2.52
LO	Discoaster tamalis		2.87
LO	Sphenolithus spp.		3.65
LO	Reticulo fenestra pseudoumbilicus ($>7 \mu m$)	NN15-14	3.79
FCO	Discoaster asymmetricus		4.13
LO	Amaurolithus primus		4.50
LO	Ceratolithus acutus		5.04
FO	Ceratolithus rugosus	NN13	5.12
FO	Ceratolithus acutus		5.32
LO	Discoaster quinqueramus	NN12	5.59
FO	Amaurolithus spp. =FO Amaurolithus primus	NN11b	7.362~7.424*

表 1	晚中新世钙质超微化石事件及年代(据 Raffi et al.,	2006)
		,

Table 1 Calcareous nannofossil event chronology scheme(from Raffi et al., 2006)

注:X. 属种丰度交叉变化转换界面(cross-over in abundance);FO. 初现面(first occurrence);LO. 末现面(last occurrence);LO. 连续出现沿限的 末现面(last consistent occurrence);RE. 再次进入出现的初现面;AB. 顶锋带开始界面(Acme Beginning);FCO. 连续出现初现面(first consistent occurrence);*.数据来自大西洋或地中海记录(datum based on Atlantic or Mediterranean records).

玻片上制成固定片.将制好的片子置于蔡司 Axioskop 40 型偏光显微镜下放大1000 倍观察鉴定.上述工作 在广州海洋地质调查局实验测试所完成.

对钻孔上部部分样品进行扫描电镜分析,以确 定 Emiliania huxleyi 生物带的初现面和顶峰带层 位.取适量样品加水后用孔径 0.45 µm、直径 47 mm 的过滤膜过滤,待过滤膜自然干燥后,用剪刀剪下一 小块用双面胶粘贴到铜桩上.膜的表面镀金,然后放 到扫描电镜下放大 6 000 倍观察和统计.每个样品 观察和统计 10 个视域,分别统计钙质超微化石总个 数及 Emiliania huxleyi 的个数,最后算出 Emiliania huxleyi 的百分含量.该工作在同济大学海洋 地质国家重点实验室完成.

1.3 年代地层学划分依据

钙质超微化石生物带的划分采用 Martini (1971)"标准新生代钙质超微浮游生物地层带"分带 方案和 Okada and Bukry(1980)的分带方案;钙质 超微化石事件年代的确定采用 Raffi *et al.*(2006) 的方案.该方案中包括了主要见于大西洋和地中海 的事件和年龄,本研究只选用了适用于各大洋的事 件和年龄(表 1).新近纪的地质年代依据 Lourens *et al.*(2004)的地质年代表.

2 钙质超微化石年代地层学结果

2.1 钙质超微化石事件记录及说明

4 个钻孔的岩性为含钙质生物粉砂和含钙质生物粘土质粉砂(图 2),均含较丰富的钙质超微化石. 通过对这 4 个钻孔的钙质超微化石年代地层学分析,识别出 Martini(1971)划分方案中的晚中新 世一更新世的 7 个化石带(表 2)和 17 个钙质超微 化石生物事件.各站位所识别的化石带和事件主要 取决于该站位不同层段钻取岩心的间隔.其中 SH1B孔识别出 7 个钙质超微化石生物事件,SH2B 孔识别出 2 个钙质超微化石生物事件,SH5C 孔识 别出7个钙质超微化石生物事件,SH7B孔识别出

图 2 南海神狐海域水合物钻探区 4 个钻孔钙质超微化石带的划分与对比(虚线代表推测界线)

Fig. 2 Correlation of calcareous nannofossil zones and events between holes SH1B, SH2B, SH7B and SH5C in the Shenhu Area, South China Sea

表 2 南海神狐海域水合物钻探区各钻孔钙质超微化石事件的深度分布

Table 2 The depths of calcareous nannofossil events at holes SH1B, SH2B, SH5C and SH7B

	化石带 在龄()		(M-)	深度(m)					
生初事件	化口市	中時(IVIa)	SH1B	SH2B	SH7B	SH5C		
FO E. huxleyi Acme	NN21		0.063	8.00		8.10	7.40		
FO E. huxleyi	NN21		0.291	18.55		15.00	10.55		
LO P. lacunosa	NN20		0.436	25.70	25.95				
LCO R. asanoi	NN19	更	0.90	29.96					
FCO R. asanoi	NN19	新世	1.078	31.64		96.30			
FO Gephyrocapsa spp. ($>5.5 \mu m$)	NN19		1.617			104.85			
FO Gephyrocapsa (medium) spp.	NN19		1.67				96.73		
LO D. brouweri	NN18		2.06	<75.00	<75.00		99.80		
LO D. pentaradiatus	NN17		2.393				123.85		
LO D. surculus	NN16		2.52				133		
LO D. tamalis			2.87			131.50	140.50		
LO S. abies/neoabies		上	3.65			145.00			
LO R. pseudoumbilicus	NN15	新 世	3.79			155.54	>175.17		
LO Amaurolithus spp.	NN14	Ľ.	4.50			159.52			
LO C. acutus	NN13		5.04			161.20			
FO C. acutus	NN12		5.32	143.00	150.85	171.20			
LO D. quinqueramus	NN12	晚中	5.59	185.00		173.20			
FO A. amplificus	NN11b	新世	7.362	>261.86	>235.86	>194.18			

11个钙质超微化石生物事件.各钻孔生物事件及其 出现的深度见表 2.4 个钻孔钙质超微化石生物带及 地层时代的划分与对比见图 2.

对上述图表和本文中这些事件的记录分析,有 两点需要说明:首先,限于钻孔取心间距较大,在确 定某一生物事件出现深度时,不适合求算该事件出 现深度和邻近样品的平均深度,因此本文用的是所 识别各事件的样品深度;其次,由于钻孔在上新统和 中新统间隔零星取样,所识别的部分化石事件深度 并不是该地层序列中的实际深度,而是所获得沉积 记录中的岩心深度,因此,这类化石事件代表的年龄 比其实际出现的年龄要偏早或偏晚.如 SH5B孔的 LO D. surculus 事件见于 133 m,该深度上没有岩 心,目前可推测的是该事件应发生在与上部 LO D. pentaradiatus 事件(123.85 m)之间的某个深度;且 该孔 133 m 处的年龄实际上比 2.52 Ma 要早.因此 本文分析中对这类事件的年龄前面用"约"表示,如 LO D. surculus 事件深度 133 m,年龄约 2.52 Ma.

2.2 地层划分和对比

下面从老到新对岩心中所识别的事件、地层划 分和钻孔间的对比进行分析.

上中新统 (Late Miocene)

NN11带:钻区岩心底部最老沉积物为 NN11带上部沉积.在 Martini(1971)化石分带标准方案中,NN11带以FO Discoaster quinqueramus 和 LO D. quinqueramus 为底、顶界,即以 D. quinqueramus 的存在或沿限带来确定.当该种保存不好或其他原因,其下界也可用 FO D. berggrenii 或 FO D. surculus 确定,但上界或与 NN12带的分 界仍为 LO D. quinqueramus. 在低纬度海域该带可根据 FO Amaurolithus primus(后修订为 FO Amaurolithus spp., Raffi et al., 2006) 划分.该带进一步分为 CN9b 和 CN9a(Okada and Bukry, 1980)2个 亚带.研究的 SH1B、SH2B 和 SH7B 孔最底部样品 261.86 m、 238.85 m和 194.18 m处均发现较多 Amaurolithus spp., 样品中同 时常见 D. quinqueramus 和 Reticulofenestra pseudoumbilica,由此 可确定这几个孔最底部沉积应属于 NN11带或 CN9b 亚带上部,并 因为 FO Amaurolithus spp. (7.362 Ma)可推知上述 3 孔钻达最老地 层晚于7.362 Ma.

NN12 带:按 Martini(1971)化石分带方案,该带与上部 NN13 带的分界标志是 FO Ceratolithus rugosus 或 LO Ceratolithus acutus. 在低 纬度海域该带可根据 FO C. acutus 进一步分为 CN10b 和 CN10a 亚带 (Okada and Bukry, 1980). 在研究区, NN12 带的下部沉积(CN10a 亚 带)见于 SH1B 孔和 SH7B 孔,在 SH1B 孔的深度分别为 143.00 m 和 185.00 m,而在 SH7B 孔分别为 171.20 m 和173.20 m(图 2). 此外,在 SH2B 孔 150.85 m 处识别 FO C. acutus 事件,把该深度沉积也归于 NN12 带.

上新统/中新统界线:地层年代表中该界线的年龄是 5.332 Ma (Lourens et al., 2004).在钙质超微化石地层实际应用中,把该界线 划分在钙质超微化石 NN12 带内(Raffi et al., 2006),大致相当于 C. acutus 初现面(5.32 Ma).本研究采用相同方法,将 SH1B、SH2B 和 SH7B 孔上新统/中新统界线依 C. acutus 的初现面分别确定在 143.00 m、150.85 m 和 171.20 m.

上新统(Pliocene)

NN13-NN14带,NN13带以FOC. rugosus或LOC. acutus为底界、以FOD. asymmetricus与NN14带交界,后者以LOAmaurolithus spp. (4.50 Ma)为顶界(Martini,1971).由于取心不连续,未获 得这两个带的沉积和化石记录.

NN15带,该带以 LO Amaurolithus spp. (4.50 Ma)为底界,以 LO R. pseudoumbilica 为顶界(约 3.79 Ma)(Martini,1971). 仅在 SH7B 孔 识别出该带,其底界深度为 161.20 m,顶界位于 159.52 m.

NN16 带,以 LO R. pseudoumbilica 为底界,以 D. surculus 末 现面为顶界. SH5C 和 SH7B 两个钻孔揭示了该带沉积. 在该带内可 进一步 识别出 Sphenolithus abies & S. neoabies 的末 现面 (3.65 Ma)和 LO D. tamalis(2.87 Ma). 这两个事件在 SH7B 孔出 现的深度分别为 145.00 m 和131.50 m; 而在 SH5C 孔只识别了 LO D. tamalis(140.50 m). SH5C 孔底部 175.17 m 深度样品不能确定 LO R. pseudoumbilica 事件,推测该深度年龄<3.79 Ma.

NN17-NN18 带,以 D. surculus 末现面(2.52 Ma)为 NN17 底 界,以 LO D. pentaradiatus(2.393 Ma)划分二者界限,而以 LO D. brouweri(2.06 Ma)为 NN18 顶界. 仅在 SH5C 孔识别出这两个带的 上述 3 个事件,分别见于 133.00 m,123.85 m和 99.80 m. 在 SH1B 和 SH2B 孔中上部(约 75.00~85.00 m)地层各揭示了 2 段含钙质 生物粉砂. SH1B 孔 75.00 m和 SH2B 孔 70.00 m深度样品分析结果 推测它们的年龄应>2.06 Ma(>LO D. brouweri).

更新统/上新统界线:该界线的年龄是1.806 Ma (Lourens et al.,2004).在实际的钙质超微化石地层分析中,该界线划分在钙质 超微化石更新世 NN19 带和上新世 NN18 之间(Raffi et al.,2006), 或者划分在中等大小的 Gephyrocapsa spp. ($>3.5 \mu$ m) 初现面(1. 67 Ma)和 LO D. brouweri(2.06 Ma)之间.由于本次所研究的钻孔 岩心不连续,同时研究区再沉积现象十分突出,增大了确定 LO D. brouweri 事件的难度.为此,本研究原则上取中等大小的 Gephyrocapsa spp. ($>3.5 \mu$ m) 初现面为主要控制点,把更新统底界置于其 出现的深度(图 2).本次研究表明,钻孔取心所获得的上新统和更新 统底部地层零星不全.FO Gephyrocapsa spp. ($>3.5 \mu$ m)事件只见 于 SH5C 孔的 96.73 m处.其他几个钻孔都不能确定 FO Gephyrocapsa spp. ($>3.5 \mu$ m)和 LO D. brouweri 事件,这两个事件的深度 只能根据其上下地层所识别的事件粗略地外推确定.

更新统(Pleistocene)

NN19 带,该带以 LO D. brouweri 为底界、以 LO Psedouemiliania lacunosa 为顶界. 4 个钻孔的顶部均揭示了该带沉积,并且,在 该带内除中等大小的 Gephyrocapsa spp. (>3.5 μ m)初现面外,还 可以识别出其他几个生物事件,如 R. asanoi 的初现面和末现面(图 2). SH1B 和 SH2B 孔 LO P. lacunosa (0. 432 Ma)分别出现在 25.70 m和 25.95 m; SH1B 孔 FCO R. asanoi(1.078 Ma)和 LCO R. asanoi(0.90 Ma)分别位于 31.64 m 和29.96 m. SH7B 孔 FO Gephyrocapsa spp. (>5.5 μ m, 1.62 Ma) 出现在 104.85 m. 这些事件表明,4 个钻孔中只有 SH5B 孔和 SH7B 孔揭示了该带底部的部分沉积,但 没获得该带上部沉积;而 SH1B 孔和 SH2B 孔只有该带顶部约中更 新统以来的沉积.

NN20带,以LOP. lacunosa 为底界、以FO Emiliania huxleyi 为顶界. 该事件在 SH1B、SH7B 和 SH5C 孔分别位于 18.55 m、 15.00 m和 10.55 m,相当于 0.291 Ma. NN21带,以FO E. huxleyi(0.291 Ma)为底界,其内部又识别 出 Emiliania huxleyi 的顶峰带(0.063 Ma),分别位于 SH1B、SH7B 和 SH5C 孔的 8.00 m、8.10 m和 7.40 m. SH2B 孔在该带未取心.

本次工作中, Emiliania huxleyi 的初现面和顶 峰带的确定主要依据在扫描电镜下观察和统计分析 结果(表 3).

3 水合物储层的地层年代与沉积速率

3.1 水合物储层地层年代

根据上述钙质超微化石生物地层学研究结果, SH1B、SH2B和 SH7B孔揭示的最老地层达上中新 统,约<7.362 Ma,SH5C孔揭示的最老地层达上新 统,约<3.79 Ma.SH2B和 SH7B孔水合物储层时 代分别属于晚中新世和晚中新世一早上新世(图 2).神狐海域位于南海北部被动大陆斜坡,与国外同 处被动大陆坡的布莱克海脊水合物的产出层位相 比,后者产出层位只见于上新统.因此,神狐海域的 水合物储层的时代范围比后者下延到更老地层 (表 5).

3.2 沉积速率变化及特征

对钻孔顶部的岩心展开了氧同位素和测年分析,获得了SH1B、SH5C和SH7B全新统底界的结果(表4).按照上述地层划分和全新统测年结果综合分析,计算出各钻孔全新世、更新世、上新世和中新世晚期几个时代的沉积速率如表4.

由表 4 可见, 神狐海域水合物钻探区不同钻孔 不同地质时期的沉积速率差异较大, 尤其是更新世. SH5C 和 SH7B 孔更新世的沉积速率是 SH1B 和 SH2B 孔约 2 倍, 说明该时期不同位置的钻孔所接 受的沉积物总量不同. 总体上, 全新世沉积速率最 高, 介于 20~34.16 cm/ka之间, 其次为更新世, 介 于 3.14~5.74 cm/ka之间; 上新世的沉积速率最 低, 为 1.88~3.27 cm/ka之间; 晚中新晚期世沉积 速率较大, 在 4.18 cm/ka 以上. SH2B 和 SH7B 孔 含水合物层沉积速率分别为>4.18 cm/ka 和 1.88 cm/ka.

综上所述,南海含水合物地层的沉积速率差异较大,SH2B孔含水合物层沉积速率相对较大,超过30 m/Ma,达到41.8 m/Ma以上.但SH7B孔含水合物层沉积速率相对偏低,为18.8 m/Ma.

3.3 沉积速率对比及其与水合物成藏关系

下面对神狐钻孔与布莱克海脊水合物区沉积速 率进行对比,并结合其他资料探讨沉积速率及水合

物成藏关系.

南海构造位置与布莱克海脊相似,为被动大陆 边缘.布莱克海脊是目前世界上获取水合物实物最 多的海区之一,前期进行了大量的地震调查和 100 多个岩心取样,并实施 DSDP/ODP 航次调查,在 DSDP/ODP 的多个钻孔上新统到全新统中取得水 合物,并对上述钻孔开展地层和沉积速率的综合研 究(Borowski, 2004).在此,将南海晚中新世以来的 沉积速率与布莱克海脊的进行对比.

布莱克海脊大多数钻孔全新世的沉积速率未解 决,只有一口井的沉积速率为13 cm/ka,而南海水 合物钻探区钻孔全新世的沉积速率介于 20.00~ 34.16 cm/ka 之间; 布莱克海脊钻孔更新世的沉积 速率变化范围较大,介于 0.4~47.0 cm/ka 之间,含 水合物钻孔的介于 2.7~9.8 cm/ka 之间. 而南海水 合物钻探区钻孔更新世的沉积速率介于 3.14~ 5.74 cm/ka之间;布莱克海脊钻孔上新世的沉积速 率变化范围较大,介于 0.5~21.3 cm/ka之间,含水 合物钻孔的介于 0.5~21.3 cm/ka之间. 而南海水 合物钻探区钻孔上新世的沉积速率介于 1.88~ 3.27 cm/ka之间,含水合物钻孔的沉积速率分别为 1.88 cm/ka 和3.27 cm/ka;布莱克海脊钻孔中新世 的沉积速率变化范围较大,介于 1.8~30.3 cm/ka 之间,含水合物钻孔沉积速率介于 25.6~30.3 cm/ ka之间,而南海水合物钻探区钻孔中新世的沉积速 率在4.18 cm/ka以上(表 5). 对比结果表明,南海水 合物钻探区晚中新世以来各时期沉积速率与布莱克 海脊的基本相当,差异不大.同时,南海含水合物层 的沉积速率在布莱克海脊水合物层的沉积速率范围 内.说明世界海域海底以下水合物的产出层位及其 沉积速率具有相似性.

前人研究认为高沉积速率有利于水合物的赋存.如从目前世界海域获取天然气水合物的岩心沉积物时代和沉积速率来看,含天然气水合物地层的沉积速率一般较快,通常超过30m/Ma,如东太平洋海域中美海槽赋存天然气水合物的新生代沉积层的沉积速率高达1055m/Ma;西太平洋美国大陆边缘中的4个水合物聚集区内,有3个与快速沉积区有关,其中布莱克海脊晚渐新世至全新世沉积物的沉积速率达160~190m/Ma(Mountain and Tucholke, 1985).

概括起来,沉积速率与水合物成藏的关系主要 有3点:首先,大多数海洋天然气水合物为生物甲烷 气,在快速沉积的半深海沉积区聚集了大量的有机

ΠĽ
计结复
数量统
电镜下
故
huxle yi
Emiliania
L样品 I
探区钻3
合物钻
审狐 水 [.]
表3 才

The abundance of *Emiliania huxleyi* at holes SH1B, SH5C and SH7B observed under scan electric microscope Table 3

		SH1B AL				SH5C 孔				SH7B AL	
深度 (cm)	超微化石总个 数(6 000倍, 10 个视域)	Emiliania huxleyi 个数(6 000 倍, 10 个视域)	Emiliania huxleyi 百分含量(%)	深度 (cm)	超微化石总个数(6 000倍,10个视域)	Emiliania huxleyi 个数(6000倍, 10个视域)	Emiliania huxleyi 百分含量(%)	深度 (cm)	超微化石总个 (数 6 000 倍, 10 个视域)	Emiliania huxleyi 个数(6 000 倍, 10 个视域)	<i>Emiliania</i> huxleyi 百分含量(%)
510	15	0	0	510	46	4	6	530	35	0	0
595	44	11	25	595	55	10	6	650	55	11	20
655	88	31	35	660	55	2	4	700	27	10	37
700	61	21	34	700	25	2	8	810	43	15	35
757	60	13	22	740	88	7	8	910	20	2	10
800	89	31	35	800	62	2	ŝ	1 015	33	IJ	15
840	91	36	40	840	63	2	ŝ	1 095	41	ŝ	7
905	45	5	11	905	87	-1	1	$1 \ 160$	52	3	9
945	86	22	26	970	61	2	ŝ	1 200	27	2	7
$1 \ 015$	68	2	ŝ	1 055	75	33	4	1 265	45	2	4
1 055	110	14	13	1 095	31	0	0	$1 \ 310$	26	ŝ	12
1 095	85	6	11	1 140	84	0	0	1365	13	4	31
1 140	68	8	12	1 200		I		1 440	27	2	7
$1\ 200$	61	5	∞	1245	130	0	0	1500	20	4	20
$1 \ 310$	25	0	0	1285	113	0	0	1 600	115	0	0
1 415	26	2	∞	1 370	85	0	0	1 650	132	0	0
1500	23	0	0	1440	39	0	0	1 705	153	0	0
1 600	26	2	∞	1500	55	0	0	1750	160	0	0
1 705	61	1	2	1550	63	0	0	1815	290	0	0
1815	152	3	2	1600	40	0	0	1 855	18	0	0
$1 \ 915$	57	0	2	1705	23	0	0	$1 \ 915$	67	0	0
1960	85	0	1	1 810	70	0	0	2 000	23	0	0
2 000	67	0	4	$1 \ 915$	55	0	0	2 050	21	0	0
2 045	41	0	0	2 000	65	0	0	2 090	17	0	0
2 110	65	0	2	2085	33	0	0	2 150	55	0	0
$2 \ 150$	47	0	0	2 150	60	0	0	2 195	75	0	0
2 195	45	0	0	$2\ 2\ 15$	30	0	0	2 240	100	0	0
2 235	54	0	0	2 255	65	0	0	2 280	30	0	0
2 280	42	0	0	2 300	45	0	0	2 300	90	0	0
2 320	93	0	0	2358	70	0	0	2 325	210	0	0
2365	87	0	0								
2 400	200	0	0								
2505	150	0	0								
$2\ 615$	120	0	0								
2 715	58	0	0								

表 4 神狐水合物钻探区钻孔中新世一全新世各时期的沉积速率(cm/ka)

Table 4 Variation in sedimentation rates during Miocene to Holocene in Shenhu gas hydrate-drilling area

	술	新世(12 k	a)	更新	新世(1806	ka)	上表	新世(5 332	ka)	晚中新	世晚期(7:	362 k a)
站位	底界线 (cm)	厚度(cm)	沉积速率 (cm/ka)	底界线 (cm)	厚度(cm)	沉积速率 (cm/ka)	底界线 (cm)	厚度(cm)	沉积速率 (cm/ka)	底界线 (cm)	厚度(cm)	沉积速率 (cm/ka)
SH1B	315	315	26.25	6 000 *	5 685	3.14	14 300	10 359	1.94	>26 186	> 11886	>5.85
SH2B	—	_	_	6 000*	—	—	$15\ 085$	$11\;543$	3.27	>23 586	>8 501	>4.18
SH5C	410	410	34.16	9 673	9 263	5.13	—	_	_			
SH7B	240	240	20	10 600 *	10 360	5.74	$17\ 120$	6 6 3 5	1.88			

注:带*标号为估算深度.

表 5 南海水合物钻探区与布莱克海脊晚中新世以来沉积速率的对比

Table 5 Sedimentation rates of the Blake Ridge region and Shenhu gas hydrate-drilling area

向告以大	計合	岩心长	沉积速率(cm/ka)				钻井底部	钻达	水合物
利北人	珀亚	(m)	全新世	更新世	上新世	中新世	年代(Ma)	地层	层位
DSDP76	★533	399	NR	8.3	0.5~21.3	NP	-3.1	上新统	
	991	56	NR	0.4~2.1	1.6	NP	-5.9	中新统	
	992	50	NR	0.7	_	9.6	-8.2	中新统	
	993	52	NR	—	—	21	-9.8	中新统	
ODP164	★994	704	NR	3~9.8	3 - 14	30.3	-6.0	中新统	上新统
	995	704	NR	2.9~8	8.9~14	30.3	-6.1	中新统	
	★996	63	NR	4.8	NP	NP	-1.1	更新统	上新统
	★997	750	NR	2.7~4	2.7~20.5	25.6	-6.4	中新统	上新统
	SH1B	261.86	26.25	2.02	2.94	>5.85	<7.362	中新统	
南海水合物	★SH2B	238.85	_	1.96	3.27	>4.18	<7.362	中新统	中新统
钻探	SH5C	175.17	34.16	5.16	_		<3.790	上新统	
	★SH7B	194.18	20	5.71	1.88		<7.362	中新统	中新统一上新统

注:★533 代表钻取水合物的站位.

碎屑物,由于迅速埋藏在海底未遭受氧化作用而保 存下来,并在沉积物中经细菌作用转变为大量的甲 烷(Claypool and Kaplan, 1974),为上覆的水合物 层提供微生物分解甲烷气源.同样地,南海神狐水合 物甲烷属于微生物气或以微生物气为主的混合成因 气(黄霞等,2010).其次,高沉积速率容易形成欠压 区,从而构成良好的输导体系(Dillon *et al.*, 1998).再者,还有的学者认为高沉积速率可以导致 盆地热流值降低,从而有利于水合物的形成.

上述对比表明,南海神狐水合物钻区的沉积速 率较高,但与布莱克海脊水合物区相比较总体上差 异不大.但是在本研究区内有一定差异,特别是产出 水合物的 SH2B 和 SH7B 两个钻孔水合物层段的沉 积速率有差异,尤其是 SH7B 孔上新世水合物段沉 积速率偏低.该结果表明沉积速率与水合物成藏的 关系比前期认识更为复杂,有待未来深入研究. 岩心沉积物共识别出 17 个新近纪钙质超微化石事件,其中最老的钙质超微化石事件是 NN11 带上部 (未见底)或 CN9b 带(未见底),时代晚于7.362 Ma.

神狐水合物钻探区钻孔钻达最老地层为上中新统,除 SH5C 孔仅钻达上新统外,其余 3 个钻孔均钻达上中新统.其中 SH2B 和 SH7B 孔含水合物层的沉积时代分别为晚中新世和晚中新世一早上新世. 神狐海域的水合物储层的时代范围与同为被动大陆边缘的布莱克海脊水合物区水合物层的时代基本同时期,并下沿到更老地层.

神狐水合物钻探区不同钻孔、不同地质时期的 沉积速率差异较大.全新世沉积速率最高,介于20~ 34.16 cm/ka之间;其次为更新世,介于 3.14~ 5.74 cm/ka之间;上新世的沉积速率最低,介于 1.88~3.27 cm/ka之间;晚中新世晚期沉积速率较 大,在4.18 cm/ka以上.SH2B孔含水合物层沉积速 率在 4.18 cm/ka以上,SH7B孔含水合物层沉积速 率为 1.88 cm/ka,这表明南海水合物产出层位沉积 速率差异较大,也意味着沉积速率与水合物成藏的 关系可能比前期认识更为复杂.

4 结论

References

- Borowski, W. S. , 2004. A Review of Methane and Gas Hydrates in the Dynamic, Stratified System of the Blake Ridge Region, Offshore Southeastern North America. *Chemical Geology*, 205: 311 – 346. doi: 10. 1016/j. chemgeo. 2003. 12. 022
- Claypool, G. E., Kaplan, I. R., 1974. The Origin and Distribution of Methane in Marine Sediments. In: Kaplan, I. R., ed., Natural Gases in Marine Sediments. Plenum Press, New York, 99-139.
- Dillon, W. P., Danforth, W. W., Hutchinson, D. R., et al., 1998. Evidence for Faulting Related to Dissociation of Gas Hydrate and Release of Methane off the Southeastern United States. In: Henriet, J. P., Mienert, J., eds., Gas Hydrates: Relevance to World Margin Stability and Climate Change. *Geological Society*, *London*, *Special Publications*, 137: 293 – 302. doi: 10. 1144/GSL. SP. 1998. 137. 01. 23
- Huang, X., Zhu, Y. H., Lu, Z. Q., et al., 2010. Study on Genetic Types of Hydrocarbon Gases from the Gas Hydrate Drilling Area, the Northern South China Sea. *Geoscience*, 24(3): 576-580 (in Chinese with English abstract).
- Kuang, Z. G., Guo, Y. Q., 2011. The Sedimentary Facies and Gas Hydrate Accumulation Models since Neogene of Shenhu Sea Area, Northern South China Sea. Earth Science—Journal of China University of Geosciences, 36(5):914-920 (in Chinese with English abstract). doi:10.3799/dqkx.2011.096
- Lourens, L., Hilgen, F., Shackleton, N. J., et al., 2004. The Neogene Period. In: Gradstein, F. M., Ogg, J. G., Smith, A. G., eds., A Geological Time Scale 2004. Cambridge University Press, Cambridge, 409-440.
- Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. In: Farinacci, A., ed., Proceedings of the [] Planktonic Conference, Teconscienza, Roma, 2: 739-785.
- Mountain, G. S., Tucholke, B. E., 1985. Mesozoic and Cenozoic Geology of the U. S. Atlantic Continental Slope and Rise, In: Poag, C. W., ed., Geologic Evolution of the United States Atlantic Margin. Van Nostrand Reinhold Company, New York, 293-341.
- Okada, H., Bukry, D., 1980. Supplementary Modification and

Introduction of Code Numbers to the Low-Latitude Coccolith Biostratigraphic Zonation (Bukry, 1973; 1975). *Mar. Micropaleontol.*, 5(3): 321–325. doi: 10. 1016/0377-8398(80)90016-X

- Pang, X., Chen, C. M., Peng, D. J., et al., 2008. Basic Geology of Baiyun Deep Water Area in the Northern South China Sea. *China Of fshore Oil and Gas*, 20(4): 215– 222 (in Chinese with English abstract).
- Raffi, I., Backman, J., Fornaciari, E., et al., 2006. A Review of Calcareous Nannofossil Astrobiochronology Encompassing the Past 25 Million Years. *Quaternary Science Reviews*, 25 (23 - 24): 3113 - 3137. doi: 10. 1016/j. quascirev. 2006. 07. 007
- Su, X., Chen, F., Yu, X. H., et al., 2005. A Pilot Study on Miocene through Holocene Sediments from the Continental Slope of the South China Sea in Correlation with Possible Distribution of Gas Hydrates. *Geoscience*, 19 (1):1-13 (in Chinese with English abstract).
- Zhang, G. X., Huang, Y. X., Zhu, Y. H., et al., 2002. Prospect of Gas Hydrate Resources in the South China Sea. Marine Geology& Quaternary Geology, 22(1): 75-87 (in Chinese with English abstract).
- Zhang, H. Q., Yang, S. X., Wu, N. Y., et al., 2007. China's First Gas Hydrate Expedition Successful, "Fire in the Ice", the Methane Hydrate Newsletter of the U. S. Department of Energy, 2007, Spring/Summer 5 : 1.

附中文参考文献

- 黄霞,祝有海,卢振权,等,2010.南海北部天然气水合物钻探 区烃类气体成因类型研究.现代地质,24(3): 576-580.
- 匡增桂,郭依群,2011.南海北部神狐海域新近系以来沉积 相及水合物成藏模式.地球科学——中国地质大学学 报,36(5):914-920.
- 庞雄,陈长民,彭大钧,等,2008.南海北部白云深水区之基础 地质.中国海上油气,20(4):215-222.
- 苏新,陈芳,于兴河,等,2005.南海陆坡中新世以来沉积物 特性与气体水合物分布初探.现代地质,19(1):1-13.
- 张光学,黄永祥,祝有海,等,2002.南海天然气水合物的成 矿远景.海洋地质与第四纪地质,22(1):75-81.