doi:10.3799/dqkx.2013.006

宁镇地区安基山侵入岩 SHRIMP 锆石 U-Pb 年龄及其地质意义

曾键年1,李锦伟1,陈津华1.2,陆建培1

中国地质大学资源学院,湖北武汉 430074
 浙江省地质调查院,浙江杭州 311203

摘要:对宁镇地区安基山岩体主要岩石类型花岗闪长斑岩的 SHRIMP 锆石 U-Pb 定年结果表明,安基山岩体的花岗闪长斑岩 SHRIMP 锆石 U-Pb 年龄为(106.9±0.9)Ma,代表了岩体形成年龄,岩体形成于早白垩世晚期;安基山岩体的形成明显晚于 铜陵等地高钾钙碱性中酸性侵入岩形成时代,揭示出宁镇地区中酸性钙碱性岩浆活动及其成矿响应是中生代长江中下游成 矿带大规模岩浆活动的另一期成岩成矿事件;宁镇地区铜多金属成矿作用在时间、空间和成因上与 107 Ma 左右的钙碱性中酸性岩浆活动有密切的联系,区内成岩成矿作用是一个连续的过程;宁镇地区钙碱性中酸性岩浆活动的地球动力学背景对应 中国东部中生代岩石圈拆沉减薄事件;长江中下游地区岩石圈拆沉从 130 Ma 左右开始,可能一直持续到 107 Ma 以后. 关键词:安基山岩体;锆石 U-Pb 定年;地质年代学;地球动力学背景;宁镇地区. 中图分类号: P612 文章编号: 1000-2383(2013)01-0057-11 收稿日期: 2012-04-02

SHRIMP Zircon U-Pb Dating of Anjishan Intrusive Rocks in Ningzhen District, Jiangsu, and Its Geological Significance

ZENG Jian-nian¹, LI Jin-wei¹, CHEN Jin-hua^{1,2}, LU Jian-pei¹

Faculty of Earth Resources, China University of Geosciences, Wanhan 430074, China
 Zhejiang Institute of Geological Survey, Hangzhou 311203, China

Abstract: The SHRIMP zircon U-Pb dating of granodiorite-porphyry, the main rock type of Anjishan rock mass yields the age of 106.9 \pm 0.9 Ma, as the formation age of the Anjishan rock mass, which shows that the Anjishan rock mass formed in the late Early Cretaceous. Anjishan rock mass is younger than the high-K calc-alkaline intermediate-acidic intrusive rocks in Tongling and other districts and it illustrates that the intermediate-acidic intrusive rocks in Ningzhen District belongs to another diagenetic event in the middle to lower Yangtze metallogenic belt's Mesozoic large magmatism. The Ningzhen District's Cu-polymetallic mineralization is closely related with the 107 Ma calc-alkaline intermediate-acidic magmatism in time, space and origin. The petrogenesis- mineralization has been a continuous process in this district. The geodynamics background of the Ningzhen District's calc-alkaline intermediate-acidic magmatism corresponds to the Mesozoic lithospheric delamination thinning event in Eastern China. It demonstrates that the middle to lower Yangtze lithosphere delamination began at about130 Ma, and lasted to 107 Ma or later.

Key words: Anjishan rock mass; zircon U-Pb dating; geochoronolog; geodynamics background; Ningzhen district.

江苏宁镇地区广泛发育着中生代的中酸性侵入 岩,它们以高资、石马、安基山、其林门岩体为代表, 通常被称为宁镇岩(基)段(毛建仁等,1990).前人对 宁镇地区的侵入岩曾进行过详细的岩石学和地球化 学工作(宁仁祖和陈根生,1989;毛建仁等,1990;夏 嘉生,2000;许继峰等,2001).因此,该地区的中酸性

基金项目:中国地质调查局资源评价项目(Nos. 1212010781014,1212010660404);中国地质大学地质过程与矿产资源国家重点实验室开放基金(No. MGMR2001-1).

作者简介:曾键年(1956-),男,教授,主要研究方向为矿床学、矿床地球化学和成矿规律与成矿预测. E-mail:1178911300@qq. com

侵入岩具有较高的研究程度.然而,宁镇地区中酸性 侵入岩的年代学研究则相对滞后,缺乏近年来已成 熟应用的岩浆岩锆石 U-Pb 精细定年方法获得的年 代学数据.以安基山岩体为例,除早年报道的 K-Ar 同位素年龄外(江苏省地质矿产局,1989;毛建仁等, 1990),目前尚无精确的年代学数据报道.这一状况 不利于该地区构造一岩浆一成矿作用的深入研究. 本文将依据新的 SHRIMP 锆石 U-Pb 测年数据探 讨安基山侵入岩的形成年代,并对比长江中下游地 区类似火成岩,揭示其地质意义.

1 地质背景

安基山侵入岩体位于长江中下游 Fe-Cu-Au-多 金属成矿带的宁镇 Cu-多金属矿集区内,地处宁镇 褶皱山脉中偏东部,大地构造位置上处于扬子陆块 东段北缘(图1).区内地层按地质构造发展阶段可 划分为基底地层(Ar~Z)、盖层(Z~T)和叠加盖层 (J~K)3部分(江苏省地质矿产局,1989;万天丰和 朱鸿,1989);基底地层为一套具轻微混合岩化的浅 变质沉积岩系,盖层为浅海相、海陆交互相和少量陆 相的碳酸盐岩和碎屑岩系,叠加盖层为巨厚的陆相 红色碎屑岩系和陆相火山侵入岩系.矿集区内构造 较为复杂,褶皱构造近东西向展布,由一系列轴线近 东西向的平行复式褶皱组成;断裂构造主要有发育 于背斜两翼的近东西向逆冲断裂及北西向与北东向 共轭剪切断裂. 宁镇地区燕山期岩浆活动强烈,主要沿断裂和 褶皱核部侵入,表现为大规模、多期次的岩浆侵入和 喷发活动,岩石类型以中酸性的侵入杂岩为主.这些 岩浆岩与区内铜一多金属成矿作用存在密切的时空 和成因联系(李相民等,2009).

2 岩体及样品特征

安基山岩体是宁镇地区代表性的中生代中酸性 侵入岩体之一,沿汤山断裂带侵入;其地表出露形状 为复杂形态的岩株,属于区域上高资杂岩体的西部 组成部分(图1).该岩株平面上大致沿 NEE 向展 布,延伸约11 km,最宽处约8 km,面积约40 km² 左 右;其在东北部与高资岩体呈侵入接触,其他部分则 侵入志留系一泥盆系沉积岩地层之中.

安基山侵入岩主要由两种岩石类型组成:石英 闪长玢岩分布最为广泛,主要分布在岩体的中部和 东北部;花岗闪长斑岩次之,多见于岩体西部和东南 部.除了以上两种主要岩石类型之外,还可见有少量 中基性的闪长玢岩.资料表明,该侵入体可分出两个 岩相带(毛建仁等,1990):外部相为石英闪长玢岩; 内部相为花岗闪长斑岩,至深部渐变为似斑状花岗 闪长岩.夏嘉生(2000)根据地质填图的岩石谱系划 分原则,将该侵入体划分成两个侵入岩单元,即安基 山石英闪长岩单元和花岗闪长岩单元.大多数研究 者认为(许继峰等,2001,李相民等,2009),该侵入体 中的两类岩石边为具有成因联系并具有演化关系、

Fig. 1 Location of tectonics and sketch geologic map of Ningzhen region 1. 断裂; 2. 推测断裂; 3. 中酸性侵入岩体; 4. 宁镇区;根据夏嘉生(2000)和许继锋等(2001)资料修编

图 2 样品 10NW04 显微镜下特征 Fig. 2 Characteristics of the sample 10NW04 in microscope d(对角线长)为 2. 24 mm; a. 斜长石斑晶的聚片双晶,正交偏光; b. 角闪石斑晶碳酸盐化和绿泥石化,单偏光

	1	lable 1 P	analysis i	in major ele	ements (γ_0) and the	ace eleme	ents (10	•) of samp	ple 10INW	V04	
SiO_2	TiO_2	$\mathrm{Al}_2\mathrm{O}_3$	Fe_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	Σ	Na_2O/K_2O
64.75	0.48	15.20	1.53	2.48	0.05	1.97	4.22	4.59	2.69	0.26	98.22	1.71
Со	Ni	Cr	V	Cu	Pb	Zn	Rb	Sr	Ba	Zr	Hf	Nb
9.5	19.2	30.6	74.4	38.2	12.3	37.6	40.1	966.0	1 838.0	76.8	2.6	15.2
Ta	Th	U	Sc									
1.1	11.2	2.7	4.8									
La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
38.8	75.6	7.47	25.1	4.1	1.39	3.42	0.41	2.06	0.33	0.91	0.11	0.89
Lu	Y	ΣREE	L/H	$\mathrm{La}_\mathrm{N}/\mathrm{Yb}_\mathrm{N}$	ðEu	ðCe						
0.13	8.6	160.72	18.46	31.27	1.13	1.09						

测试单位:湖北省地质实验研究所.

同期次不同阶段的侵入岩系.

石英闪长玢岩为块状构造,斑状结构,斑晶主要 为斜长石及少量角闪石等,基质多呈微晶状,由长石 和石英聚合体组成;花岗闪长斑岩也为块状构造,斑 状或似斑状结构,斑晶为斜长石及少量角闪石和钾 长石,基质为微粒一细粒的斜长石、钾长石、石英、黑 云母等.石英闪长玢岩和花岗闪长斑岩具有相似的 矿物组成,但后者含有相对较多的实际矿物石英,并 且结晶相对较粗.两者含有一个相似的副矿物组合: 磷灰石、磁铁矿、锆石、金红石等.

本次分析样品 10NW04 采自安基山铜矿床周 围未受矿化影响的新鲜岩石,样品重 15 kg,岩性为 花岗闪长斑岩,取样点坐标为: 32°6′22.1″N, 119°4′36.8″E.显微镜下,岩石样品具斑状结构(图 2),斑晶为斜长石(12%)、角闪石(5%)、钾长石 (3%)和石英(2%),斜长石聚片双晶发育并可见绢 云母化(图 2a),角闪石呈柱状、发育绿泥石化和碳 酸盐化(图 2b);基质具显微花岗结构,由斜长石、钾 长石、石英和角闪石等矿物构成.该样品主、微量元 素测试显示(表 1),常量组分 SiO₂ 含量为 64.75%、 K₂O+Na₂O 为 7.28%、Na₂O/K₂O 为 1.71,岩石富 碱,在 K₂O-SiO₂ 图解(略)上,位于高钾钙碱性系列 区域;微量元素 Sr 为 966×10⁻⁶、Y 为 8.6×10⁻⁶; 稀土元素 Σ REE 为 160.72×10⁻⁶,LREE/HREE 为 18.46, δ Eu(1.13)具弱的正铕异常.上述岩石地 球化学特征与许继峰等(2001)讨论该岩体的 adakite 特征所分析样品基本一致.

3 锆石 SHRIMP U-Pb 定年

3.1 样品制备与分析

用常规方法将岩石样品(10 kg)粉碎至约 300 μm,经浮选和电磁选等方法分选出单颗粒锆石 后,在双目镜下挑纯.然后将锆石样品和标样 (TEM)一起用环氧树脂固定于样品靶上.对样品靶 表面进行研磨抛光,直至锆石新鲜截面露出.对靶上 锆石进行显微镜下反射光、透射光观察与照相后,进 行 CL 分析,再进行镀金以备分析.阴极发光分析与 成像(CL)在中国地质科学院北京离子探针中心的 电子探针室完成.

锆石 U-Pb 年龄测试在中国地质科学院北京离

子探针中心的 SHRIMPⅡ上完成,根据阴极发光照 射结果选择典型的岩浆锆石进行分析;详细分析流 程和测试原理请参考 Compston et al. (1992) 和 William and Claesson(1987)的有关文献. 分析采用 跳峰扫描,记录 ZrO⁺、²⁰⁴ Pb⁺、背景值、²⁰⁷ Pb⁺、 ²⁰⁸Pb⁺、U⁺、Th⁺、UO⁺和ThO⁺9个离子束峰,每7 次扫描记录一次平均值,一次离子流为4.5 nA,加 速电压约 10 kV 的 O⁺,样品靶上的离子束斑直径 约为 25~30 µm,质量分辨率约 5 000(1%峰高).应 用澳大利亚地调局标准锆石 TEM(其母岩为澳大利 亚堪培拉附近的闪长岩体,年龄 417 Ma)进行元素 间的分馏校正,应用 RSES(澳大利亚国立大学地学 院)参考锆石 SL13(年龄 572 Ma, U 含量 238× 10⁻⁶)标定所测锆石的 U、Th 和 Pb 含量.分析时每 测 4 次样品靶上锆石后测定一次标样(TEM),以控 制分析仪器的稳定性和离子记数统计的精确性.

分析数据处理采用 Ludwig (1999, 2001)的 ISOPLOT 及 SQUID1.02 程序.普通铅是假设 ²⁰⁶ Pb/²³⁸ U、²⁰⁸ Pb/²³² Th 年龄谐合进行校正.所有分 析结果见表 2,表 2 中所列单个数据点的误差均为 1₅. 加权平均年龄具 95%的置信度.

3.2 分析结果

所分析样品的锆石晶形主要为「100]+「110]+ $\lceil 101 \rceil + \lceil 211 \rceil, \lceil 100 \rceil + \lceil 110 \rceil + \lceil 101 \rceil + \lceil 211 \rceil +$ 「301]和「100]+「110]+「101],锆石晶体长约110~ 320 µm, 宽约 80~135 µm, 长宽比约为1:1.1~3: 1,大多具有明显的岩浆振荡环带(图 3);从分析结 果可见(表 2),本次分析锆石的 Th/U 比值变化范 围在 0.38~0.71 之间,表明锆石具有岩浆成因的特 点.CL分析显示,少数锆石包裹有未熔蚀彻底的核 及小锆石晶体,即所谓具有继承核的锆石;本次分析 洗择锆石时,尽量避免洗择这种具继承核的锆石.如 分析点 9.1(104.5±2.7 Ma) 与 9.2(111.2± 2.0 Ma)分别位于同一颗锆石的核部和外环带(图 3),两个点具有相近的分析结果(表 2),表明该锆石 的核部与外环带一样均为岩浆成因,两个年龄值之 间的时差可能代表从岩浆初始结晶到定位固结这一 岩浆作用时段.

分析了样品靶上 19 颗锆石的 20 个点. 由表 2 所列分析数据可以看出,所有的锆石颗粒分析点给 出了较为一致的年龄,表明本次选择的锆石分析点 全部为有效点,且分析质量良好. 20 个锆石点的分 析结果在谐和图上组成密集的一簇(图 4),获得安 基山岩体花岗闪长斑岩中锆石²⁰⁶ Pb/²³⁸ U 的加权平

- 图 3 安基山岩体花岗闪长斑岩分析锆石的阴极发光(CL) 图像
- Fig. 3 Cathodo luminescence (CL) images of selected zircons from granodiorite porphyry of Anjishan intrusion

均年龄为(106.9±0.9)Ma,方差为1.15.

4 讨论

4.1 岩体的形成时代

自 20 世纪 70 年代以来,不同的单位和学者对 安基山岩体进行了年代学研究.据《宁镇山脉地质 志》(江苏地质矿产局,1989),安基山岩体的石英闪 长玢岩全岩 K-Ar 法年龄为 92.0~95.3 Ma、石英闪 长玢岩中角闪石 K-Ar 法年龄为 106.0 Ma、石英闪 长玢岩中黑云母 K-Ar 法年龄为 117.0 Ma、花岗闪 长斑岩中黑云母 K-Ar 法年龄为 123.1 Ma. 资料检 索表明,截至目前安基山岩体尚无同位素精细测年 方法的年代学数据公开报道.显然,上述 K-Ar 法定 年结果给出的安基山岩体同位素年龄值差别较大, 并不能精确地约束该岩体的形成时代;事实上,K-Ar 法测年由于大多数情况下难以精确估计目标矿 物中是否存在氩过剩或氩丢失,导致该技术方法本 身可靠程度偏低,其测试结果仅为地质学家们提供 一个宽泛的参考年龄区间.因此,对安基山岩体进行 精确定年是必要的基础工作.本次对该岩体花岗闪 长斑岩中锆石的 SHRIMP U-Pb 测年结果为 (106.9±0.9)Ma,该年龄值误差小,分析精度较高; 对比宁镇地区同期次中酸性侵入岩的总体形成年代 趋势(江苏地质矿产局,1989;毛建仁等,1990),以及 相关铜多金属矿床中辉钼矿 Re-Os 同位素年龄(王 立本等,1997),较好地显示出区域上岩浆一成矿作

Th	5	32 Th /	²⁰⁶ Ph *	207 Ph/	清差	²⁰⁶ Ph/	法差	²⁰⁷ Ph/	まむ	206 Ph/238 []	亲割	²⁰⁷ Ph/ ²⁰⁶ Ph	清
(9_0		238 U	(10^{-6})	$^{206} Pb$	(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(238 U	(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(二)(235 U	(二〇〇)	(Ma)	(1 ₀)	(Ma)	(1_{σ})
292		0.65	6.7	0.0566	2.9	0.0166	1.5	0.11	3.6	105.9	1.6	-104	244
104		0.50	2.3	0.0666	3.9	0.0168	2.4	0.11	6.0	107.4	2.6	115	370
232		0.61	5.9	0.0591	3.1	0.0168	2.0	0.11	4.3	107.7	2.1	-447	388
105		0.46	3.6	0.0657	3.9	0.0166	2.2	0.10	6.5	106.3	2.3	-1368	1360
62		0.38	2.5	0.0745	4.4	0.0164	2.3	0.12	6.8	104.6	2.4	113	562
123		0.54	3. 4	0.0733	3.8	0.0161	2.1	0.10	6.6	102.7	2.1	-182	548
141		0.46	4.6	0.0635	6.9	0.0169	1.7	0.13	8.3	107.9	1.8	345	225
126		0.39	4.9	0.0569	3.7	0.0169	1.7	0.12	4.6	108.1	1.8	-132	324
186		0.53	5.2	0.0608	3.2	0.0164	2.6	0.11	4.8	104.5	2.7	-280	372
139		0.46	4.7	0.0588	3.4	0.0174	1.8	0.11	4.8	111.2	2.0	167	259
166		0.58	4.3	0.0629	3.5	0.0166	2.1	0.11	5.2	105.9	2.2	30	314
165		0.55	4.7	0.0563	3.5	0.0171	1.7	0.12	4.1	109.1	1.8	-543	421
227		0.71	4.9	0.0572	3.3	0.0169	1.8	0.10	4.6	108.1	1.9	-171	340
100		0.50	3.1	0.0635	4.9	0.0171	1.9	0.12	6.4	109.0	2.0	326	230
172		0.48	5.3	0.0590	3.3	0.0164	1.9	0.11	4.6	105.0	2.0	-206	541
257		0.64	6.2	0.0577	3.2	0.0170	1.7	0.12	4.1	108.7	1.8	48	236
140		0.48	4.5	0.0646	4.3	0.0171	1.7	0.11	6.4	109.2	1.8	453	168
88		0.46	2.9	0.0729	4.1	0.0164	2.3	0.12	6.1	105.0	2.4	227	504
178		0.71	3.8	0.0865	3.1	0.0162	2.9	0.10	6.8	103.3	2.9	-130	$1 \ 094$
266		0.74	5.3	0.0579	3.2	0.0164	1.5	0.11	4.0	104.9	1.6	151	123

表 2 安基山岩体样品 10NW04 的 SHRIMP 锆石 U-Pb 分析结果

用的一致性和内在联系.由此表明,本次测年龄结果 具有较高的可信度,能够代表该岩体的结晶年龄和 形成时代;因此,安基山岩体形成于早白垩世晚期.

该年龄值揭示出一个重要的地质事实:在长江 下游的宁镇断隆区内,高钾钙碱性中酸性岩浆的侵 入活动发生于 107 Ma 左右. 前人研究表明,以九 瑞、铜陵和安庆为代表的长江中下游断隆区内,高钾 钙碱性中酸性侵入岩形成时代为 146~134 Ma(表 2),被认为是铜金矿化的主要时期(吴才来等,2003; 王彦斌等,2004a,2004b;周涛发等,2005;Zhou et al., 2007);以庐枞、宁芜火山岩盆地为代表的断陷 区内,橄榄安粗岩系形成时代为135~127 Ma,被认 为是铁矿化的主要时期(刘珺等,2007;周涛发等, 2007,2008;袁峰等,2008;Zhou et al., 2008);断隆 区和断陷区均发育的 A 型花岗岩,集中形成于 127~123 Ma,被认为与铀、金等矿化有关(范裕等, 2008). 本文获得的安基山岩体形成年代与长江中下 游九瑞、铜陵和安庆等地的高钾钙碱性中酸性侵入 岩形成时代并不一致,存在约 39~27 Ma 的时差, 表明宁镇地区钙碱性中酸性侵入岩是长江中下游成 矿带中生代大规模岩浆活动的另一期成岩事件.这 一成岩作用与成矿作用的关系以及其揭示的地球动 力学背景,本文在后面进一步讨论.

4.2 成岩与成矿关系

前人对宁镇地区部分铜多金属矿床进行了成矿 时代的测定(王立本等,1997);铜山铜多金属矿床的 辉钼矿 Re-Os 年龄为(106±3)Ma,安基山铜多金属 矿床的辉钼矿 Re-Os 年龄为(108±2)Ma.可以看出, 宁镇地区铜多金属成矿年代学数据在误差范围内与 本文获得的安基山岩体形成年代(106.9±0.9 Ma)基 本一致,都在107 Ma 左右;这说明宁镇地区的铜多金 属成矿作用与中酸性侵入岩体(如安基山岩体)的形 成在时间上应是一个相联系的过程.长江中下游成矿 带的有关研究表明(张乐骏等,2008;曾键年等, 2010),成岩与成矿时差通常为1~2 Ma.可能限于不 同定年方法的测试条件和精度,这种成岩与成矿时差 难以精确测定,往往表现为相近或一致.如九瑞矿集 区城门山铜矿床辉钼矿 Re-Os 年龄为 140±2 Ma(吴 良士和邹晓秋,1997),相关花岗闪长岩锆石 U-Pb 年 龄为140.6±1.6 Ma(据蒋少涌,九瑞地区找矿学术会 议交流资料,2008);武山铜矿床辉钼矿 Re-Os 年龄为 146.4±2.6 Ma(李进文等,2007),相关花岗闪长岩锆 石 U-Pb 年龄为145.6±3.9 Ma(蒋少涌等,2008).铜 陵矿集区和安庆矿集区也有类似规律(吴才来等, 1996,2003;毛景文等,2004;蒙义峰等,2004;张乐骏 等,2008)(表3).

矿床地质研究表明(李相民等,2009),产出于安 基山岩体东部的铜多金属矿床的矿化类型具有"多 位一体"特征,矿体主要为砂卡岩型,其次为斑岩型 和大脉型;成矿与花岗闪长斑岩的空间关系密切,岩 体中的捕虏体构造是控制砂卡岩型矿体的主要构 造,斑岩型和大脉型矿体也主要产于岩体中.矿床成 因研究显示(刘南,2010;徐莺,2010),安基山铜多金 属矿床不仅成矿流体与岩浆热液特征相似,而且成 矿金属也大部分来自深源,通过岩浆作用被活化、迁 移到地壳浅部定位成矿.上述研究结合成岩成矿的 时间相近这一事实,足以说明安基山花岗闪长质岩 体与铜多金属成矿作用有着密切的时间、空间和成 因联系.

4.3 岩浆一成矿地球动力学背景

岩石地球化学研究表明(许继峰等,2001),安基 山中酸性侵入岩以亏损 HREE、Y 和富集 Sr 为成分 特征,它们与 adakite 成分类似,但不是板片熔融、基 性岩浆分异或地壳物质混染的产物;其岩浆应起源 于一个相对较深的地壳源区,由下地壳中的镁铁质 物质部分熔融产生.安基山侵入岩的 adakite 成分特 征表明,宁镇地区在中生代可能为一个>50 km 的 加厚地壳,而地球物理资料显示宁镇地区现在地壳 厚度仅在 30 km 左右(王谦生,1992);这揭示出安基 山侵入岩在 107 Ma 形成后到现在,该地区发生了 明显的岩石圈减薄作用.这是一个非常有意义并值 得重视的地球动力学过程.

作为地学的研究热点,许多研究者从不同角度

63

表 3 九瑞、安庆和铜陵地区主要钙碱性岩体同位素年龄

Table 3 The isotopic ages of major calc-alkaline rock in Jiurui, Anqing and Tongling areas

岩浆岩体	年龄(Ma)	测定方法	资料来源	岩浆岩体	年龄(Ma)	测定方法	资料来源
安庆月山	138.7 \pm 0.5	锆石 U-Pb	张乐骏等,2008	铜陵铜官山	137.5 ± 1.1	锆石 U-Pb	徐夕生等,2004
庐江沙溪	134.0 ± 1.5	锆石 U-Pb	曾键年等,2010	铜陵凤凰山	144.2 ± 2.3	锆石 U-Pb	吴淦国等,2008
铜陵冬瓜山	135.5 \pm 2.2	锆石 U-Pb	徐晓春等,2008	铜陵鸡冠石	135.5 \pm 4.4	锆石 U-Pb	楼亚儿和杜杨松,2006
铜陵新桥	140.4 \pm 2.2	锆石 U-Pb	王彦斌等,2004b	九瑞城门山	140.6 \pm 1.6	锆石 U-Pb	蒋少涌,2008*
铜陵胡村	140.0 ± 2.6	锆石 U-Pb	徐晓春等,2008	九瑞武山	145.6 \pm 3.9	锆石 U-Pb	蒋少涌等,2008

*. 学术会议交流资料.

提出了中国东部岩石圈减薄的成因模式(郑建平, 1999;张旗等,2001;吴福元等,2003;肖龙等,2004; Sun et al.,2007),尽管对岩石圈减薄时间和作用 机制存在分歧,但多数研究者认为,古太平洋板块与 上覆大陆地壳之间的相互作用是中国东部陆区白垩 纪重大地质事件的主要驱动力(Mao et al.,2003; 吴福元等,2003;Sun et al.,2007).目前对中国东 部岩石圈减薄时间的约束是间接的(吴福元等, 2003),学者们不断在探索限定岩石圈减薄时间的办 法.由于岩石圈减薄必然导致软流圈抬升和大规模 的岩浆一成矿响应,因此,岩浆、成矿等作用最为强 烈的时期,很可能对应了岩石圈减薄的高峰时间;而 从岩浆的形成机制来看,中国东部的巨量 adakite 岩 浆活动似乎更进一步约束了岩石圈减薄的时限(张 旗等,2001).

Mao et al. (2003)通过对华北克拉通及邻区 (包括长江中下游地区)金属矿床大量精确测年数据 和成矿岩浆岩年代学资料的分析,提出中国东部中 生代大规模岩浆-成矿作用出现在 200~160 Ma、 140 Ma 左右和 130~110 Ma 三个时期,所对应的地 球动力学背景分别为碰撞造山过程、构造体制大转 折和岩石圈拆沉减薄.长江中下游九瑞、铜陵等断隆 区的高钾钙碱性中酸性侵入岩的形成时代(146~ 134 Ma)表明,这些地区中生代岩浆一成矿作用的 地球动力学背景主要关联 140 Ma 左右的构造体制 大转折事件;众多的研究资料显示(王强等,2001;张 旗等,2001,2002; Wang et al., 2006),这些火成岩 大多具有 adakite 地球化学特征. 对比 Mao et al. (2003)提出的中国东部陆区中生代大规模岩浆一成 矿地球动力学环境时限,本文获得的安基山岩体形 成年代揭示,宁镇地区高钾钙碱性中酸性岩浆活动 受中国东部中生代岩石圈拆沉减薄事件的约束. Sun et al. (2007)认为,早白垩世古太平洋板块活动 制约了中国东部的岩浆一成矿作用:在140 Ma 至 125~122 Ma 太平洋板块向 SW 方向俯冲,形成中 国东部伸展环境和早白垩纪岩浆一成矿作用;在约

125~122 Ma 太平洋板块改变 80°,向 NW 方向俯 冲并持续到 110 Ma 左右,中国东部转变为挤压环 境并导致岩浆一成矿作用停止;约 110~100 Ma,太 平洋板块又转变成向 SW 方向俯冲,中国东部又开 始伸展活动和岩浆一成矿作用.根据这一认识并结 合本文获得的安基山侵入岩形成年代(107 Ma),有 理由认为,宁镇地区的燕山期岩浆活动是不同于长 江中下游其它隆起区(例如铜陵地区和九瑞地区)的 新一期岩浆作用.

在中国东部完成古特提斯构造体制向环太平洋 构造体制转换和古太平洋俯冲背景下,岩石圈快速 伸展导致的 adakite 岩浆活动,可能是岩石圈减薄作 用的一部分(肖龙等,2004);由于 adakite 岩浆大量 熔出使下地壳密度增加而失稳,导致地壳的拆沉与 减薄(张旗等,2002).基于这种 adakite 岩浆与岩石 圈减薄关系的认识,对比上述不同地区成岩时代可 以看出,在中国东部陆区,即使在长江中下游这样一 个局部地区,岩石圈的拆沉与减薄时限也存在不均 一性.在九瑞、铜陵等断隆区内,岩石圈减薄作用发 生的年代可能早一些(130 Ma 左右);同为断隆区的 宁镇地区,岩石圈减薄作用开始的年代则晚 20Ma 左右.由此认为,长江中下游地区岩石圈拆沉与减薄 从 130 Ma 左右开始,持续到 107 Ma 以后.

5 结论

(1)安基山岩体的花岗闪长斑岩 SHRIMP 锆石 U-Pb 年龄为(106.9±0.9)Ma,代表了岩体形成的 年龄,岩体形成于早白垩世晚期.

(2)安基山岩体的形成明显晚于铜陵等地高钾 钙碱性中酸性侵入岩形成时代,揭示出宁镇地区中 酸性钙碱性岩浆活动及其成矿响应是长江中下游成 矿带中生代大规模岩浆活动的另一期成岩成矿 事件.

(3)宁镇地区铜多金属成矿作用在时间、空间和

成因上与 107 Ma 左右的钙碱性中酸性岩浆活动有密切的联系,区内成岩成矿作用是一个连续的过程.

(4)宁镇地区钙碱性中酸性岩浆活动及其相关 铜多金属成矿作用的地球动力学背景对应中国东部 中生代岩石圈拆沉与减薄事件.

(5)基于 Mao et al. (2003)分析和本文获得的 安基山岩体 SHRIMP 锆石 U-Pb 年龄,长江中下游 地区岩石圈拆沉作用从 130 Ma 左右开始,可能一 直持续到 107 Ma 以后.这一认识有待于更深入的 研究和更多证据的支持.

致谢:野外调研和取样得到南京地质矿产研究 所郭坤一研究员、曾勇教授级高工以及江苏省地质 调查院的支持与帮助,中国地质科学院离子探针中 心万渝生研究员为本文 SHRIMP 锆石 U-Pb 年龄 测定提供了多方帮助,审稿专家提出了重要的修改 意见,谨此一并致谢.

References

- Bureau of Geology and Mineral Resources in Jiangsu Province, 1989. Geological Chronicles for Ningzhen Mountain Range, Jiangsu Science and Technology Press, Nanjing, 10-75.
- Compston, W., Williams, I. S., Kirschvink, J. L., et al., 1992. Zircon U-Pb Ages for the Early Cambrian Timcscale. J. Geol. Soc. London, 149(2): 171-184. doi:10. 1144/gsjgs. 149. 2. 0171
- Fan, Y., Zhou, T. F., Yuan, F., et al., 2008. LA-ICP-MS Zircon U-Pb Ages of the a Type Granites in the Lu-Zong (Lujiang-Zongyang) Area and Their Geological Significance. Acta Petrologica Sinica, 24(8): 1715 – 1724 (in Chinese with English abstract).
- Jiang, S. Y., Li, L., Zhu, B., et al., 2008. Geochemical and Sr-Nd-Hf Isotopic Compositions of Granodiorite from the Wushan Copper Deposit, Jiangxi Province and Their Implications for Petrogenesis. Acta Petrologica Sinica, 24(8):1679-1689 (in Chinese with English abstract).
- Li, J. W., Li, X. H., Pei, R. F., et al., 2007. Re-Os Age of Molybdenite from the Southern Ore Zone of the Wushan Copper Deposit, Jiangxi Province, and Its Geological Significance. Acta Geologica Sinica, 81 (6): 801-807 (in Chinese with English abstract).
- Li, X. M., Sun, G. X., Qiu, S. P., 2009. Geological-Geophysical Model and Ore Prospecting Significance for Anjishan Copper Deposit. *Journal of Geology*, 33(1): 28-34 (in Chinese with English abstract).

Liu, J., Zhou, T. F., Song, M. Y., et al., 2007. Rock Geo-

chemistry and Genesis of the Bajiatan Intrusion in the Lujiang-Zongyang Volcanic Basin, Anhui. *Acta Petrologica Sinica*, 23(10): 2379 - 2386 (in Chinese with English abstract).

- Liu, N., 2010. Ore Sources and Prospecting Direction of Skarn-Type Copper-Polymetallic Deposit in the Middle of Ningzhen. Central South University (Dissertation), Changsha,53-61 (in Chinese with English abstract).
- Lou, Y. E., Du, Y. S., 2006. Characteristics and Zircon SHRIMP U-Pb Ages of the Mesozoic Intrusive Rocks in Fanchang, Anhui Province. *Geochimica*, 35(4):21-29 (in Chinese with English abstract).
- Ludwing, K. R., 1999. Using Isoplot/Ex, Version 2. 0: Geoehronological Toolkit for Microsoft Excel. Berkeley Geoehronoloeical Center Special Publication, Berkeley, 47.
- Ludwig, K. R., 2001. Squid 1. 02: A User Manual. Berkeley Geochronolocical Center Special Publication, Berkeley, 19.
- Mao, J. R., Su, Y. X., Chen, S. Y., 1990. The Acidic Intrusive Rocks and Mineralization in the Middle-Lower Reaches of Yangtze River. Geological Press, Beijing, 15-191 (in Chinese).
- Mao, J. W., Wang, Y. T., Zhang, Z. H., et al., 2003. Geodynamic Settings of Mesozoic Large-Scale Mineralization in North China and Adjacent Areas—Implication from the Highly Precise and Accurate Ages of Metal Deposits. Science in China (Series D), 43(8):630-645.
- Mao, J. W., Holly, S., Du, A. D., et al., 2004. Molybdenite Re-Os Precise Dating for Molybdenite from Cu-Au-Mo Deposits in the Middle-Lower Reaches of Yangtze River Belt and Its Implications for Mineralization. Acta Geologica Sinica, 78(1):121-131(in Chinese with English abstract).
- Meng, Y. F., Yang, Z. S., Zeng, P. S., et al., 2004. Tentative Temporal Constraints of Ore-Forming Fluid Dystems in Tongling Metallogenic Province. *Mineral Deposits*, 23 (3):271-280 (in Chinese with English abstract).
- Ning, R. Z., Chen, G. S., 1989. REE Characteristics of Yanshanian Intrusive Rocks from Ningzhen. *Geochimica*, (1):52-60 (in Chinese with English abstract).
- Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. *Earth and Planetary Science Letters*, 262: 533-542.
- Wan, T. F., Zhu, H., 1989. The Tectonic Stress Field of the Cretaceousearly Eocene in China. Acta Geologica Sinica, 63(1):33-45 (in Chinese with English abstract).
- Wang, L. B., Ji, K. J., Chen, D., 1997. Re-Os Isotope Ages of Molybdenite from the Anjishan Copper Deposit and the

Tongshan Copper Molybdenum Deposit and Their Implications. *Acta Petrrologica et Mineralogica*, 16(2): 154–159 (in Chinese with English abstract).

- Wang, Q. S., 1992. The Research of the Characteristic of Regional Gravity and Magnetic Anomaly and Crustal Structure in Zhejiang-Anhui District, Southeast China. In: Li, J. L., ed., The Structure and Evolution of Marine and Terrestrial Lithosphere in Southeast China. China Science and Technology Press, Beijing, 287 – 294 (in Chinese).
- Wang, Q. S., Derek, A. W., Xu, J. F., et al. 2006. Petrogenesis of Cretaceous Adakitic and Ahoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. *Lithos*, 89(3-4):424-446.
- Wang, Q. S., Zhao, Z. H., Xiong, X. L., 2001. Melting of the Underplated Basaltic Lower Crust: Evidence from the Shaxi Sdakitic Sodic Quartz Diorite-Porphyrites, Anhui Province, China. *Geochimica*, 30(4): 353-360 (in Chinese with English abstract).
- Wang, Y. B., Liu, D. Y., Zeng, P. S., et al., 2004a. SHRIMP U-Pb Geochronology of Xiaotongguanshan Quartz-Dioritic Intrusions in Tongling District and Its Petrogenetic Implications. Acta Petrologica et Mineralogica, 23(4): 298-304 (in Chinese with English abstract).
- Wang, Y. B., Liu, D. Y., Meng, Y. F., et al., 2004b. SHRMP U-Pb Geochronlogy of the Xinqiao Cu-S-Fe-Au Deposit in the Tongling Ore District, Anhui. *Geology in China*, 31(2):169-173 (in Chinese with English abstract).
- Williams, I. S., Claesson, S., 1987. Isotopic Evidence for the Precabrian Provenance and Caledonian Metamorphism of High Grade Paragneisses from the Seve Nappes, Scandanavia Caledonides: II. Ion Microprobe Zircon U-Th-Pb. Contrib Mineral Pertrol., 97(2): 205-217.
- Wu, C. L., Zhou, X. R., Huang, X. C., et al., 1996.
 ⁴⁰ Ar/³⁹ Ar Chronology of Intrusive Rocks from Tongling. Acta Petrrologica et Mineralogica, 15(4):299-306 (in Chinese with English abstract).
- Wu, C. L., Chen, S. Y., Shi, R. D., et al., 2003. Origin and Features of the Mesozoic Intermediate- Acid Intrusive in the Tongling Area, Anhui, China. Acta Geosicientia Sinica, 24(1): 41-48 (in Chinese with English abstract).
- Wu, F. Y., Ge, W. C., Sun, D. Y., et al., 2003. Discussions on the Lithospheric Thinning in Eastern China. *Earth Science Frontiers*, 10(3): 51 – 56 (in Chinese with English abstract).

Wu,G.G., Zhang, D., Di, Y.J., et al., 2008. SHRIMP Zir-

con U-Pb Dating of Intrusive and Its Dynamic Sitting for Deep in Tongling Metallogenic Province, Anhui Province. *Science in China* (*Series D*), 38(5): 630-645 (in Chinese).

- Wu, L. S., Zhou, X. Q., 1997. Re-Os Isptopic Age Study of the Chengmenshan Copper Deposit, Jiangxi Province. *Mineral Deposits*, 16(4): 376-381 (in Chinese with English abstract).
- Xia, J. S. ,2000. A Preliminary Division of Lineage Units of Granitoid Rocks in Ning-Zhen Region. *Jiangsu Geolo*gy,24(2): 81-86 (in Chinese with English abstract).
- Xiao, L., Robert, P. R., Xu, J. F., 2004. The Role of Deep Processes Controls on Variation of Compositions of Adakitic Rocks. Acta Petrologica Sinica, 20(2): 219– 228 (in Chinese with English abstract).
- Xu, J. F., Wang, Q., Xu, Y. G., et al., 2001. Geochemistry of Anjishan Intermediate- Acid Intrusive Rocks in Ningzhen Area: Constraint to Origin of the Magma with HREE and Y Depletion. Acta Petrologica Sinica, 17 (4): 576-584 (in Chinese with English abstract).
- Xu, X. C., Lu, S. M., Xie, Q. Q., et al., 2008. SHRIMP Zircon U-Pb Dating for the Magmatic Rocks in Shizishan Ore-Field of Tongling, Anhui Province, and Its Geological Implications. *Acta Geologica Sinica*, 82(4): 500-507 (in Chinese with English abstract).
- Xu, X. S., Fan, Q. C., O'Reilly, S. Y., et al., 2004. U-Pb Dating of Zircons and Petrogenic in Plications for Tongguanshan Quartz Diorite and Its Enclaves, Anhui Province. *Chinese Science Bulletin*, 49(18): 1883-1891 (in Chinese).
- Xu, Y., 2010. Research on Magmatic Origin, Evolution Mechanism and the Relation with Formation of Cupolymetallic Deposit in the Middle-Segment of Nanjing-Zhenjiang. Central South University (Dissertation), Changsha,47-55 (in Chinese).
- Yuan, F., Zhou, T. F., Fan, Y., et al., 2008. Source, Evolution and Tectonic Setting of Mesozoic Volcanic Rocks in Luzong Basin, Anhui Province. Acta Petrologica Sinica, 24(8): 1691-1702 (in Chinese with English abstract).
- Zeng, J. N., Qin, Y. J., Guo, K. Y., et al., 2010. Zircon U-Pb Dating of Ore-Bearing Magmatic Rocks and Its Constraint on the Formation Time of the Ore Deposits in Luzong Basin, Anhui Province. Acta Geologica Sinica, 84(4): 501-510 (in Chinese with English abstract).
- Zhang, L. J., Zhou, T. F., Fan, Y., et al., 2008. SHRIMP U-Pb Zircon Dating of Yueshan Intrusion in the Yueshan Ore Field, Anhui, and Its Significance. *Acta Petrologica*

Sinica,24(8):1725-1732 (in Chinese with English abstract).

- Zhang, Q., Qian, Q., Wang, E. Q., et al., 2001. An East China Plateau in Mid-Late Yanshanian Period: Implication from Adakites. *Scientia Geologica Sinica*, 36(2):248-255 (in Chinese with English abstract).
- Zhang, Q., Wang, Y., Liu, W., et al., 2002. Adakite: Its Characteristics and Implications. *Geological Bulietin of China*,21(7):431-434 (in Chinese with English abstract).
- Zheng, J. P., 1999. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning Bbeneath the Eastern China. China University of Geosciences Press, Wuhan, 26-128 (in Chinese).
- Zhou, T. F., Fan, Y., Yuan, F., et al., 2008. Geochronology of the Volcanic Rocks in the Luzong (Lujiang Zongyang) Basin and Its Significance. Science in China (Series D), 51(10):1470-1482.
- Zhou, T. F., Song, M. Y., Fan, Y., et al., 2007. Chronology of the Bajiatan Intrusions in the Luzong Basin, Anhui, and Its Significance. Acta Petrologica Sinica, 23(10): 583-591 (in Chinese with English abstract).
- Zhou, T. F., Yue, S. C., Yuan, F., 2005. The Petrogensis and the Metallogeny Study of the Yueshan Ore-Field, Anhui Province. Geological Publishing Press, Beijing, 3 – 13 (in Chinese).
- Zhou, T. F., Yuan, F., Yue, S. C., et al., 2007. Geochemistry and Evolution of Ore-Forming Fluids of the Yueshan Cu-Au Skarn-and Vern-Type Deposits, Anhui Province, South China. Ore Geology Reviews, 31(2): 279-303.
- Zhou, T. F., Fan, Y., Yuan, F., 2008. Advances on Petrogensis and Metallogeny Study of the Mineralization Belt of the Middle and Lower Reaches of the Yangtze River Area. Acta Petrologica Sinica, 24(8): 1665-1678 (in Chinese with English abstract).

附中文参考文献

- 范裕,周涛发,袁峰,等,2008. 安徽庐江一枞阳地区 A 型花 岗岩的 LA-ICP-MS 定年及其地质意义. 岩石学报,24 (8):1715-1724.
- 蒋少涌,李亮,朱碧,等,2008. 江西武山铜矿区花岗闪长斑岩 的地球化学和 Sr-Nd-Hf 同位素组成及成因探讨. 岩石 学报,24(8):1679-1689.
- 江苏地质矿产局,1989. 宁镇山脉地质志. 南京: 江苏科学技 术出版社,10-75.
- 李进文,李旭辉,裴荣富,等,2007. 江西武山铜矿南矿带辉钼 矿 Re-Os 同位素年龄及其地质意义. 地质学报,81(6): 801-807.

- 李相民,孙国曦,仇慎平,2009. 安基山铜矿床地质一地球物 理模型及其找矿意义. 地质学刊,33(1):28-34.
- 刘珺,周涛发,宋明义,等,2007. 安微庐枞火山岩盆地中巴家 滩岩体的岩石地球化学特征及成因. 岩石学报,23 (10):2379-2386.
- 刘南,2010. 宁镇中段矽卡岩型铜多金属矿床成矿物质来源 及找矿方向. 长沙:中南大学(硕士学位论文),53-61.
- 楼亚儿,杜杨松,2006.安徽繁昌中生代侵入岩的特征和锆石 SHRIMP 测年.地球化学,35(4):21-29.
- 毛建仁,苏郁香,陈三元,1990.长江中下游酸性侵入岩与成 矿.北京:地质出版社.
- 毛景文, Holly, S., 杜安道, 等, 2004. 长江中下游地区铜金 (钼)矿 Re-Os 年龄测定及其对成矿作用的指示. 地质 学报, 78(1):121-131.
- 蒙义峰,杨竹森,曾普胜,等2004.铜陵矿集区成矿流体系统 时限的初步厘定.矿床地质,23:271-280.
- 宁仁祖,陈根生,1989. 宁镇地区燕山期侵入岩的稀土元素特征. 地球化学,(1):52-60.
- 万天丰,朱鸿,1989.中国白垩纪一始新世早期构造应力场. 地质学报,(1):33-45.
- 王立本,季克剑,陈东,1997.安基山和铜山铜(钼)矿床中辉 钼矿的铼一锇同位素年龄及其意义.岩石矿物学杂志, 16(2):154-159.
- 王谦生,1992.中国东南浙皖地区的区域重磁场特征与地壳 构造的研究.见:李继亮主编,中国东南海陆岩石圈结 构与演化研究.北京:中国科学技术出版社,287-294.
- 王彦斌,刘敦一,曾普胜,等,2004a. 幔源岩浆底侵作用的时 代——朝山辉石闪长岩锆石 SHRIMP 定年. 地球学 报,25(4):423-427.
- 王彦斌,刘敦一,蒙义峰,等,2004b. 安徽铜陵新桥铜硫铁金 矿床中石英闪长岩和辉绿岩锆石 SHRIMP 年代学及 其意义.中国地质,31(2):169-173.
- 吴才来,周珣若,黄许陈,等,1996.铜陵地区中酸性侵入岩年 代学研究.岩石矿物学杂志,15(4):299-306.
- 吴才来,陈松勇,史仁灯,等,2003.铜陵中生代中酸性侵入岩 特征及成因.地球学报,24(1):41-48.
- 吴福元,葛文春,孙德有,等,2003.中国东部岩石圈减薄研究 中的几个问题.地学前缘,10(3):56.
- 吴淦国,张达,狄永军,等,2008. 铜陵矿集区侵入岩 SHRIMP 锆石 U-Pb 年龄及其深部动力学背景. 中国 科学(D辑):地球科学,38(5):630-645.
- 吴良士, 邹晓秋, 1997. 江西城门山铜矿床 Re-Os 同位素年龄 研究. 矿床地质, 16(4): 376-381.
- 夏嘉生,2000. 宁镇地区花岗岩类岩石谱系单位的初步划分. 江苏地质,24(2):81-86.
- 肖龙, Robert, P. R., 许继峰, 2004. 深部过程对埃达克质岩石 成分的制约. 岩石学报, 20(2): 219-228.
- 许继峰,王强,徐义刚,等,2001.宁镇地区中生代安基山中酸

性侵人岩的地球化学:亏损重稀土和钇的岩浆产生的限制.岩石学报,17(4):576-584.

- 徐晓春,陆三明,谢巧勤,等,2008.安徽铜陵狮子山矿田岩浆 岩锆石 SHRIMP 定年及其成因意义.地质学报,82 (4):500-507.
- 徐夕生,范钦成,O'Reilly,S.Y.,等,2004. 安徽铜官山石英 闪长岩及其包体锆石 U-Pb 定年与成因探讨. 科学通 报,49(18):1883-1891.
- 徐莺,2010. 宁镇中段燕山期岩浆岩成因、演化规律及其与铜 多金属成矿关系研究. 长沙:中南大学(硕士学位论 文),47-55.
- 袁峰,周涛发,范裕,等,2008. 庐枞盆地中生代火山岩的起 源、演化及形成背景. 岩石学报,24(8):1691-1702.
- 张乐骏,周涛发,范裕,等,2008.安徽月山岩体的锆石 SHRIMP U-Pb 定年及其意义.岩石学报,24(8): 1725-1732.

- 张旗,钱青,王二七,等,2001. 燕山中晚期的"中国东部高 原":埃达克岩的启示. 地质科学,36(2):248-255.
- 张旗, 王焰, 刘伟, 等, 2002. 埃达克岩的特征及其意义. 地质 通报, 21(7): 431-434.
- 郑建平,1999.中国东部地幔置换作用与中新生代岩石圈减 薄.武汉:中国地质大学出版社,26-128.
- 曾键年,覃永军,郭坤一,等,2010. 安徽庐枞盆地含矿岩浆岩 锆石 U-Pb 年龄及其对成矿时限的约束. 地质学报,84 (4):501-510.
- 周涛发,宋明义,范裕,等,2007.安徽庐枞盆地中巴家滩岩体 的年代学研究及其意义.岩石学报,23(10):583-591.
- 周涛发,岳书仓,袁峰,2005.安徽月山矿田成岩成矿作用.北 京:地质出版社:3-13.
- 周涛发,范裕,袁峰,2008.长江中下游成矿带成岩成矿作用 研究进展.岩石学报,24(8):1665-1678.