doi:10.3799/dqkx.2013.094

阿拉善北部地区石炭纪火山岩 岩石成因及构造意义

党 犇1,2,赵 虹1,2,林广春1,2,赫海洋1,吴元伟1,周广法1,曾现虎1,吴文奎1

1.长安大学地球科学与资源学院,陕西西安 710064

2.西部矿产资源与地质工程教育部重点实验室,陕西西安 710054

摘要:阿拉善北部地区石炭纪火山岩分布广泛,目前对其成因和构造环境研究还很薄弱.通过对该区石炭纪火山岩岩石学和 地球化学特征的分析,探讨其岩石成因和形成时的构造背景,为判定石炭纪盆地性质与古构造环境提供岩石地球化学约束.研 究区内石炭纪火山岩主要为中一酸性火山岩,少量基性火山岩.玄武岩、玄武安山岩的大多数样品显示亚碱性系列特征,Mg[#] 介于 0.29~0.69 之间,高场强元素 Nb、Ta、Ti 明显亏损,岩石轻度富集轻稀土元素(LREE),(La/Yb)_N=2.19~10.10,Eu 异常 不明显(δEu=0.81~1.08),稀土配分曲线右倾较缓,ε_{Nd}(t)值较高(+1.10~+6.35).总体上既显示板内构造环境特征,又携带 俯冲带地球化学印记.综合区域地质特征及前人研究结果,认为阿拉善北部及其邻区石炭纪火山岩形成于板内裂谷环境,且可 能与地幔柱事件有关,岩浆在上升过程中受到地壳物质不同程度的混染.

关键词:阿拉善;石炭纪;火山岩;岩石地球化学;构造.

中图分类号: P588.14; P595 **文章编号:** 1000-2383(2013)05-0963-12

收稿日期:2012-10-12

Petrogenesis and Tectonic Significance of Carboniferous Volcanic Rocks in Northern Alxa and Its Neighboring Areas, Inner Mongolia, China

DANG Ben^{1,2}, ZHAO Hong^{1,2}, LIN Guang-chun^{1,2}, HE Hai-yang¹, WU Yuan-wei¹, ZHOU Guang-fa¹, ZENG Xian-Hu¹, WU Wen-kui¹

1. School of Earth Sciences and Resources, Chang'an University, Xi'an 710064, China

2. Key Laboratory of Western Mineral Resources and Geological Engineering of Ministry of Education, Xi'an 710054, China

Abstract: Carboniferous volcanic rocks are widely distributed in northern Alashan League and its neighboring areas, and their genesis and tectonic setting have always been an issue of controversy. Based on analysis of petrology and petrogeochemistry characteristics of Carboniferous volcanic rocks in the study area, this paper attempts to clarify the palaeo-tectonic setting and provides independent evidence for understanding the properties of Carboniferous basin. The volcanic rocks are dominated by intermediate-acidic volcanic rock. The majority of basalts, basaltic-andesite and andesite fall into sub-alkaline series. Mg[#] number of this suit ranges from 0.29 to 0.69. These volcanic rocks samples exhibit strong depletion in the high field strength elements Nb, Ta and Ti, and minor enrichment in the LREE. In terms of REE, $(La/Yb)_N$ number ranges from 2.19 to 10.10, showing less obvious Eu depletion ($\delta Eu = 0.81$ to 1.08), and slightly right-inclined REE distribution patterns, with higher $\varepsilon_{Nd}(t)$ value (+1.10 to +6.35). The samples show not only the marks of those within plate setting as a whole, but also those of subduction zone. Combining with the regional geological characteristic, we conclude that the Carboniferous magmatic activity in the study area generated in a within-plate setting, with variable degrees of contamination of crust during magma ascending, and probably related to mantle plume event.

Key words: Alxa; Carboniferous; volcanic rocks; petrogeochemistry; tectonics.

基金项目:中国地质调查局国土资源大调查项目(No.1212010733506);银额盆地及其邻区石炭一二叠系油气远景调查(No.1212011120962);中 央高校基本科研业务费专项基金(No.CHD2010JC038).

作者简介:党犇(1966-),男,副教授,博士,主要从事矿产普查与勘探及构造地质学方面的教学与研究.E-mail: dangben@chd.edu.cn

研究区主要位于内蒙古西部阿拉善盟辖区北部 及其近邻区,该区位于中亚造山带南缘(Dobrestsov et al., 1995), 属天山一兴安造山系的主要组成部分 (任纪舜等,1999),研究区域上石炭纪一二叠纪也是 大规模成矿的重要时期.在以往的文献中,对于研究 区内出露的石炭纪一二叠纪火山岩进行系统论述和 深入研讨的甚为罕见,对其形成的构造环境,或认为 属于大陆边缘裂谷(周立发等,1995),或认为属于 沟一弧-盆体系或洋陆格局(吴泰然和何国琦, 1992;王廷印等,1992,1994,1998)、或属于后碰撞伸 展环境(王京彬等,2006).而位于研究区以西具有相 似构造背景的天山及邻区(东北部地区)石炭纪一二 叠纪火山岩成因研究程度颇高,对其构造环境目前 主要有活动大陆边缘(李锦轶等,2006;肖文交等, 2006;张雄华等,2012)、板内裂谷环境(顾连兴等, 2000: 赵泽辉等, 2004: 夏林圻等, 2006, 2008: Zhou et al., 2006)等观点.基于笔者近年来详细的野外调 研和取样,本文拟通过对研究区内石炭纪火山岩岩 石地球化学特征的分析,结合同期区内沉积建造特 征的研究成果,并与天山及邻区同时代的火山岩地 球化学特征进行对比,探讨研究区石炭纪火山岩的 岩石成因及形成的构造环境.这不仅有助于揭示阿 拉善北部及其邻区石炭纪原型盆地性质及区域构造 演化特征,而且对本区石炭一二叠系油气资源远景 调查以及其他矿产资源潜力评价和勘查开发具有非 常重要的意义.

1 区域地质概况

研究区位于西伯利亚板块与塔里木板块、华北 板块之间的中亚造山带南缘(Dobrestsov *et al.*, 1995),具体位置处于古亚洲构造域与特提斯构造域 交汇部位的天山-兴安造山系弧顶部位之北山-内 蒙古造山带(任纪舜等,1999)(图 1).

研究区内石炭纪地层为一套活动型的、以浅海 相为主的火山-沉积建造,而阿拉善古陆以南为-套稳定型的滨浅海相沉积建造.研究区岩石地层自 下而上为绿条山组(C₁*l*)、白山组(C₁*b*)/好比如组

图 1 阿拉善北部及其邻区构造地质简图(区域大地构造小图,据任纪舜等,1999)

Fig.1 Simplified geological map of northern Alxa and its neighboring areas

Ⅰ.萨彦-额尔古纳造山带;Ⅱ.蒙古-鄂霍次克造山带;Ⅲ.天山兴安造山带;Ⅳ.昆仑-祁连-秦岭造山系;Ⅴ.滇藏造山带;①额尔齐斯-佐伦-黑河缝合带;②天山南缘缝合带;③雅鲁藏布缝合带 (C₁*h*)、石板山组(C₂*s*)、岌岌台子组(C₂*j*)、阿木山 组(C₂P₁*a*)/干泉组(C₂P₁*g*).沉积建造类型主要为 浅海陆棚相、局限海岸相、碳酸盐岩台地相、辫状河 三角洲相和扇三角洲相的碎屑岩和碳酸盐岩沉积 (赵省民等,2010,2011),缺乏半深海-深海相沉积. 整个石炭纪沉积建造显示退积型的沉积充填序列, 反映了伸展型的区域构造沉积背景.

石炭纪火山岩以中酸性、中性火山岩发育为特征,基性火山岩相对不发育.早石炭世火山岩主要产于红柳园组(C₁h)、白山组(C₁bs);晚石炭世火山岩 主要产于石板山组(C₂sb)、阿木山组(C₂P₁a)/干泉 组(C₂P₁g).火山岩时代主要根据其沉积夹层或上 下正常沉积地层中产有的丰富的蜓、腕足、珊瑚等石 炭纪化石确定.剖面中火山岩与正常沉积地层呈不 等厚互层产出,反映了火山喷发的多旋回性特点.区 域上火山岩分布面积广,研究区石炭系露头几乎均 有火山岩发育,根据露头及个别钻井资料,预测研究 区及北山地区火山岩分布面积约15万km².

2 样品描述与分析方法

火山岩样品采自研究区石炭纪火山岩露头区, 主要是玄武岩、玄武安山岩和安山岩类.火山岩时代 主要根据其沉积夹层或上下沉积地层所产丰富的 蜒、腕足、珊瑚等化石(宁夏地质局区域地质调查队, 乌力吉幅1:20万区域地质调查报告,1980;甘肃省 地质局地质力学区域测量队,雅干幅、拐子湖幅1: 20万区域地质调查报告,1981)和火山岩锆石测年 成果(另文报道)确定,时代以晚石炭世为主.主要火 山岩岩石学特征如下:

玄武岩:岩石呈灰绿色,具气孔、杏仁状构造,斑 状结构,基质为拉斑玄武结构.斑晶由辉石和基性斜 长石组成,含量分别为8%和9%.斜长石斑晶呈半 自形板状或他形粒状,晶体大小0.5~1.5 mm,矿物 晶体中有中等程度的绢云母化和纳黝帘石化.辉石 斑晶多呈柱状晶体,晶体大小0.35~0.80 mm,发生 中度绿帘石化和绿泥石化.基质由基性斜长石、辉 石、基性玻璃及少量金属矿物组成,含量分别为 34%、18%、15%和6%.斜长石晶体呈细长的板条 状,并呈交织状分布,晶体空隙被粒状辉石小晶体、 火烧玻璃及细小的金属矿物所充填,形成拉斑玄武 结构.火山玻璃已脱玻化并被绿泥石交代.岩石中有 一定量气孔,其大小一般为0.5~2.0 mm,常被方解 石、绿泥石、石英充填. 玄武安山岩、安山岩:二者岩石学特点相似,岩 石呈灰绿色,杏仁状构造,斑状结构,基质为交织结 构,也见间隐结构.斑晶由斜长石组成,含量 30%~ 35%,晶体形态多呈半自形板状,晶体粒径大小一般 为 0.2~3.8 mm,晶体中双晶普遍发育,少有次生蚀 变.基质由斜长石微晶和玻璃质组成,含量分别为 40%和 30%~25%,斜长石晶体呈细小的板条状, 杂乱分布,其晶体间被火山玻璃充填,形成玻晶交织 结构,也称安山结构.玻璃质已脱玻化被细小的黝帘 石替代.岩石中气孔较为发育,气孔形状多为椭圆 形,少数为不规则状,大小 0.3~9.0 mm 不等,气孔 充填物为绿泥石、方解石、石英等.

选取代表性样品进行主量、微量元素和 Nd 同 位素测试,主量、微量元素测试由中国地质调查局西 安地质矿产研究所实验测试中心完成.样品先粗碎 成粒径约1cm的颗粒,挑去脉体等杂质,经去离子 水/超声波清洗、烘干后,细碎至小于200目,再烘干 备用.主量元素除 FeO 和 LOI 采用标准湿化学法分 析外,其余均采用荧光光谱方法分析,测试仪器为荷 兰帕纳科公司生产的 Axios 4.0 kw 顺序式 X 射线 荧光光谱仪,并经 BCR-2 和 GBW07105 标样监控, 分析误差小于 5%;稀土、微量元素采用 ICP-MS 分 析方法,测试仪器型号为美国热电公司生产的 Series II型电感耦合等离子体质谱仪(ICP-MS),经 AVG-1、BCR-1 和 BHVO-1 国际标样监控,同时做 空白样进行质量监控,分析误差小于 8%.Sm-Nd 的 化学分离采用常规的阳离子树脂(REE 和其他元素 分离)和 HDEHP(Sm、Nd 分离)方法,Nd 同位素组 成测试在中科院广州地球化学研究所的 Micromass Isoprobe型 MC-ICP-MS 上进行.143 Nd/144 Nd 比值 用¹⁴⁶Nd/¹⁴⁴Nd=0.7219校正,测得的¹⁴³Nd/¹⁴⁴Nd 比值校正到 Shin Etsu JNdi-1 标准的 0.512 115 (Tanaka et al., 2000).Nd 同位素分析的全流程本 底<100 pg.

3 岩石地球化学特征

22 个火山岩样品的主量和微量元素分析结果 列于表 1,样品普遍具有不同程度蚀变(烧失量 LOI >1.5%),由于 K、Na 和低场强元素(LFSE: Cs,Rb,Sr,Ba)在蚀变过程中可能发生了迁移,因此 本文将主要依据高场强元素(HFSE:Ti,Zr,Y,Nb, Ta,Hf)、Th 和稀土元素(REE)等化学性质不活泼 元素对样品进行岩石学分类和成因讨论.

表 1 研究区石炭纪火山岩主量元素(%)、稀土和微量元素(10⁻⁶)分析结果

Table 1 Major elements (%), REE and trace elements(10^{-6}) analyses of Carboniferous volcanic rocks in the study area

样品	09HSP GH2	09DHL GH1	09DHL GH2	09DHL GH3	09AES GH1	09AES GH2	08ZSG H01	08ZSG H03	09HBR GH1	09 HBR GH2	09HBR GH3
岩性	安山岩	玄武安山岩	玄武安山岩	玄武安山岩	玄武安山岩	安山岩	玄武岩	玄武岩	英安岩	安山岩	玄武安山岩
主量元素(%)											
SiO_2	60.46	55.68	55.50	55.54	56.02	57.91	49.42	51.38	64.06	58.10	52.87
TiO_2	1.48	1.14	1.14	1.18	0.90	0.91	1.48	1.35	0.82	0.95	1.12
$\mathrm{Al}_2\mathrm{O}_3$	16.43	16.71	16.82	17.41	19.77	17.71	15.21	14.89	11.34	12.83	15.80
Fe_2O_3	3.61	4.04	4.80	4.92	3.48	5.05	2.37	1.96	4.73	5.18	5.95
FeO	4.30	4.38	3.86	4.16	3.42	2.37	6.38	6.46	1.78	2.38	3.28
MnO	0.17	0.15	0.16	0.14	0.13	0.14	0.15	0.15	0.06	0.07	0.10
MgO	0.97	4.27	4.45	3.85	2.48	3.01	6.98	6.97	1.91	2.37	4.08
CaO	2.38	8.22	6.74	7.42	5.70	4.75	9.95	8.98	4.90	6.77	4.49
Na_2O	6.29	3.15	4.11	3.28	3.42	3.46	3.35	3.26	3.78	4.09	3.40
K_2O	0.73	0.70	0.77	0.62	1.85	2.03	0.48	0.40	2.16	1.94	4.62
P_2O_5	0.60	0.32	0.35	0.32	0.20	0.19	0.22	0.19	0.19	0.23	0.21
LOI	2.59	1.26	1.30	1.13	2.64	2.49	3.30	3.33	4.33	5.11	4.07
${\rm H_2O^-}$	0.13	0.02	0.04	0.04	0.19	0.22	0.19	0.22	0.10	0.08	0.16
Total	100.14	100.04	100.04	100.01	100.2	100.24	99.48	99.54	100.16	100.1	100.15
Mg♯	0.29	0.63	0.67	0.62	0.56	0.69	0.66	0.66	0.64	0.69	0.46
稀土元素(10-6))										
La	28.60	14.30	13.40	14.20	11.00	11.80	8.24	7.59	9.59	10.80	11.30
Ce	65.00	33.80	32.20	34.00	24.30	25.80	20.94	19.00	20.00	24.10	24.70
Pr	8.78	4.55	4.36	4.62	3.26	3.37	3.14	2.88	2.59	3.14	3.31
Nd	37.3	19.6	18.9	19.4	14.0	14.3	16.6	14.6	11.0	13.2	14.0
Sm	9.03	4.91	4.69	4.76	3.58	3.72	4.67	4.18	2.76	3.34	3.79
Eu	2.59	1.39	1.35	1.44	1.18	1.14	1.40	1.22	0.84	1.02	1.25
Gd	8.56	4.80	4.69	4.86	3.63	3.59	4.90	4.49	3.04	3.56	4.09
Tb	1.28	0.69	0.66	0.74	0.52	0.52	0.84	0.74	0.47	0.56	0.63
Dy	8.10	4.92	4.69	4.86	3.77	3.62	5.10	4.61	3.22	4.00	4.39
Ho	1.75	1.07	1.04	1.06	0.80	0.81	1.07	0.89	0.72	0.90	0.98
Er	4.65	2.91	2.82	2.80	2.25	2.19	3.06	2.65	2.04	2.39	2.61
Tm	0.70	0.43	0.42	0.42	0.33	0.33	0.41	0.38	0.32	0.38	0.38
Yb	4.30	2.69	2.61	2.62	2.12	2.02	2.70	2.25	2.07	2.36	2.34
Lu	0.65	0.39	0.39	0.40	0.30	0.30	0.35	0.34	0.31	0.35	0.35
δEu	0.41	1.62	0.90	0.85	1.21	0.98	0.72	1.28	0.74	0.79	0.33
(La/Yb) _N	4.79	3.82	3.69	3.90	3.73	4.20	2.19	3.33	3.29	3.47	3.05
Σ ree	181.0	96.5	92.2	96.2	71.0	73.5	73.4	59.0	70.1	74.1	191.0
LREE/HREE	5.05	4.39	4.32	4.42	4.18	4.49	2.98	3.84	3.83	3.70	3.58
微量元素(10-6))										
Ti	8 871	6 833	6 833	7 073	5 395	5 455	8 867	8 084	4 915	5 694	6 713
V	30.4	164.0	171.0	180.0	147.0	173.0	307.0	255.0	134.0	162.0	186.0
Rb	23.90	14.90	16.70	9.77	46.90	62.20	9.13	9.86	55.50	46.10	138.00
Sr	278.0	417.0	549.0	418.0	567.0	534.0	236.0	249.0	72.4	210.0	205.0
Ba	235.0	266.0	322.0	300.0	351.0	410.0	58.4	61.8	353.0	307.0	802.0
Zr	240.0	166.0	165.0	171.0	87.5	95.1	131.0	130.0	93.6	105.0	127.0
Hf	5.29	3.76	3.73	3.80	2.30	2.52	3.42	3.52	2.19	2.44	2.97
Nb	9.13	5.08	4.90	5.12	4.37	4.58	4.29	4.35	3.19	3.37	4.05
Ta	0.57	0.32	0.32	0.32	0.33	0.37	0.48	3.15	0.22	0.21	0.28
Y	45.9	28.2	27.2	27.4	21.7	21.5	27.5	24.8	19.8	24.5	26.1
Th	4.89	2.06	2.09	2.02	2.77	3.71	0.58	0.70	1.75	1.83	2.22
U	1.83	1.10	1.26	1.16	1.03	1.36	0.68	0.68	1.46	1.66	0.83
Nb/U	4.99	4.62	3.89	4.41	4.24	3.37	6.27	2.18	2.03	4.88	5.25

续表1

样品	09264	09264	09264	09264	08MH	08MH	08MH	09CJH	09CJH	09CS	09CS
LL LL	GIII →: 本山	GHZ ナエー	一 子 本 山	0114	サキト山	子 主 山	GIII0 テキロ	опп #-л.щ	112		
石性 	幺武石	幺武石	幺武石	幺武石	幺武石	幺武石	幺武石	女山石	幺武石	幺武女田石	幺武女田石
土重儿系(20)	50.05	40.42	50.41	40.49	45 41	44.60	44.67	50.05	E0 75	F.C. 95	FF 44
S_1O_2	20.05	49.43	20.41	49.42	45.41	44.03	44.07	59.05	30.73	56.25	1 00
$11O_2$	3.03	2.89	2.20	2.14	3.29	3.00	3.43	0.94	1.30	0.97	1.08
Al_2O_3	14.02	12.99	14.55	13.48	12.74	13.22	13.10	16.09	18.09	15.49	15.45
Fe_2O_3	7.95	10.52	3.61	3.87	3.23	2.70	2.78	2.81	4.84	2.22	2.63
FeO	5.15	1.94	7.51	6.97	10.06	10.81	11.12	3.62	3.96	4.44	4.57
MnO	0.16	0.22	0.17	0.21	0.24	0.25	0.26	0.21	0.32	0.11	0.12
MgO	2.48	2.27	4.92	5.23	6.40	6.28	6.56	2.92	3.03	4.94	5.02
CaO	4.70	6.31	6.44	5.80	11.25	10.22	10.70	4.89	8.99	5.61	6.12
Na ₂ O	4.69	5.39	3.02	3.83	2.37	2.99	2.39	3.77	3.42	3.74	3.51
K_2O	0.57	0.58	0.74	0.44	0.32	0.31	0.29	1.92	0.74	1.55	1.55
P_2O_5	0.92	0.87	0.47	0.47	0.52	0.60	0.57	0.94	1.30	0.13	0.19
LOI	6.23	6.56	5.93	8.12	3.22	3.68	3.26	0.12	0.17	4.57	4.33
H_2O^-	0.58	0.84	0.68	0.71	0.17	0.19	0.29	0.19	0.19	0.30	0.34
Total	100.53	100.81	100.65	100.69	99.22	99.38	99.42	97.47	97.1	100.32	100.35
Mg♯	0.68	0.54	0.57	0.53	0.51	0.51	0.59	0.58	0.66	0.66	0.57
稀土元素(10-6))										
La	24.00	22.20	16.20	16.90	31.20	34.70	32.40	18.20	16.60	9.96	11.20
Ce	61.0	56.9	39.9	41.8	63.9	69.5	66.6	41.5	39.6	21.7	24.7
Pr	8.89	8.32	5.77	6.02	8.31	8.95	8.62	5.49	5.56	2.82	3.27
Nd	41.1	38.4	25.9	27.4	38.8	41.6	39.8	22.8	23.6	11.8	14.1
Sm	11.00	10.60	6.94	7.24	8.15	8.55	8.37	5.42	6.00	3.05	3.67
Eu	3.61	3.43	2.27	2.27	2.73	2.87	2.88	1.42	1.75	0.96	1.15
Gd	12.20	11.80	7.62	8.06	7.71	7.99	7.75	5.25	5.85	3.41	4.05
Tb	1.83	1.73	1.12	1.26	1.17	1.26	1.24	0.76	0.85	0.56	0.60
Dy	11.50	11.10	7.33	7.84	6.58	6.46	6.74	4.82	5.24	3.49	3.86
Ho	2.41	2.33	1.49	1.65	1.24	1.21	1.20	1.00	1.10	0.72	0.85
Er	6.46	6.13	3.93	4.40	3.28	3.26	3.47	2.85	3.01	1.93	2.26
Tm	0.92	0.87	0.59	0.64	0.44	0.43	0.44	0.40	0.42	0.29	0.33
Yb	5.66	5.31	3.55	3.96	2.75	2.48	2.62	2.67	2.65	1.91	2.14
Lu	0.85	0.83	0.55	0.60	0.37	0.34	0.33	0.41	0.41	0.29	0.32
δEu	0.98	1.42	0.90	0.87	1.00	1.08	1.64	0.73	1.64	0.75	0.96
(La/Yb) _N	3.01	3.28	3.07	8.17	10.10	8.89	4.90	4.51	3.75	3.77	5.98
Σ ree	180.0	123.0	130.0	177.0	190.0	182.0	113.0	113.0	62.9	72.5	84.2
LREE/HREE	3.49	3.70	3.58	6.51	7.09	6.67	5.22	4.77	3.99	4.03	5.46
微量元素(10-6))										
Ti	18 162	17 323	13 187	12 827	19 747	20 993	20 564	5 634	7 792	5 814	6 474
V	207.0	208.0	264.0	262.0	377.2	408.0	398.0	140.0	197.0	170.0	178.0
Rb	13.10	10.50	15.20	10.20	7.92	8.26	10.60	56.10	16.30	81.30	73.20
Sr	90	172	329	225	476	482	539	478	620	434	400
Ba	426.0	437.0	298.0	213.0	78.2	187.0	141.0	284.0	228.0	300.0	339.0
Zr	317	277	203	206	195	201	208	199	158	110	119
Hf	6.51	6.26	4.71	4.79	5.25	5.64	5.57	4.71	3.74	2.85	2.99
Nb	8.56	8.83	6.97	7.24	34.60	37.70	35.80	5.32	5.02	4.01	4.31
Та	0.52	0.61	0.44	0.46	2.53	2.56	2.55	0.38	0.30	0.35	0.36
Y	64.8	62.8	39.7	44.1	31.6	32.1	32.2	28.6	29.2	19.4	22.5
Th	3.85	3.54	2.24	2.25	3.03	3.18	2.95	5.94	3.35	4.16	4.23
U	1.63	1.62	0.69	0.74	0.82	0.96	0.88	1.83	1.18	1.12	1.16
Nb/U	5.45	10.10	9.78	42.30	39.30	40.70	2.91	4.25	3.58	3.72	5.73

注: $Mg^{\#} = Mg^{2+} / (Mg^{2+} + Fe^{2+}).$

图 2 阿拉善北部及其邻区石炭纪火山岩的(Na₂O+K₂O)-SiO₂ 岩石分类图解(a)(据 Le Bas *et al.*,1986)和 Zr/TiO₂-Nb/Y 岩石分类图解(b)(据 Winchester and Floyd,1976)

Fig.2 TAS diagram(a) and Zr/ TiO2-Nb/Y diagram(b) of Carboniferous volcanics from the study area

图 3 阿拉善北部及其邻区石炭纪火山岩样品的稀土元素配分图(a)和微量元素蛛网图(b)

Fig.3 Chondrite-normalized REE diagram (a) and Primitive mantle-normalized spidergram (b) of Carboniferous volcanics from the study area

球粒陨石 REE 数据、原始地幔和 OIB(洋岛玄武岩)数据据 Sun and McDonough(1989);俯冲带玄武岩数据据 Tatsumi and Eggins(1995)

3.1 主量元素

火山岩样品的 SiO₂ 含量在 44.63%~64.06% 之间变化, Al₂O₃ 含量为 11.34%~19.77%, MgO 含量为 0.97%~6.98%, Na₂O+K₂O 含量变化较 大,分布在 2.69%~8.02%之间, 且普遍 Na₂O> K₂O,样品的部分碳酸盐化造成 CaO 含量有所升 高.样品的 Mg[#]=0.29~0.69,包括了从接近原始岩 浆到分异演化岩浆的组分.部分样品 LOI 较高,显 示后期蚀变的影响.在 TAS 岩石分类图(Le Bas *et al.*,1986)上,绝大多数样品投影于亚碱性区域 (图 2a).同样在 Nb/Y-Zr/TiO₂ 岩石分类图(Winchester and Floyd, 1976)上,绝大多数样品 Nb/Y 比值<0.5,落入亚碱性玄武岩范围(图 2b),但样品 08MHGH8、08MHGH9 和 08MHGH10 的 Nb/Y 比值>1,投入碱性区域.岩石类型主要为玄武岩、玄 武安山岩和安山岩.

3.2 微量元素

稀土元素球粒陨石标准化配分模式图(图 3a) 表明,火山岩稀土总量变化较大($\Sigma REE = 59.0 \times 10^{-6} \sim 191.0 \times 10^{-6}$),其中 LREE = 46.8×10⁻⁶ ~ 166.0×10⁻⁶,HREE = 12.2×10⁻⁶ ~ 41.8×10⁻⁶. LREE/HREE 在 2.98 ~ 7.09 之间变化. (La/Yb)_N=2.19~10.10,轻重稀土分馏不明显,整体上呈现LREE 轻度富集,曲线具有相对较平缓的特征.部分样品显示 Eu 异常($\delta Eu = 0.81 \sim 1.08$),可能与晚期斜长石的分离结晶/堆晶作用有关.

在微量元素原始地幔标准化蛛网图(图 3b)上, 火山岩样品均具有稍微右倾的分布形式,不相容元 素相对富集,总体上呈现"隆起"模式.样品富 Th,大 多数样品高场强元素 Ta、Nb等明显亏损,Ti呈现

表 2 研究区石炭纪火山岩 Nd 同位素分析结果 Table 2 Nd isotopic data for Carboniferous volcanic rocks in the study area										
08MHGH8	T1260	8.15	38.8	0.126 987	0.512 320	$0.512\;565\pm0.000\;013$	1.20			
08MHGH9	T1261	8.55	41.6	0.124 253	0.512 338	$0.512\;578\!\pm\!0.000\;009$	1.56			
08MHGH10	T1262	8.37	39.8	0.127 138	0.512 332	$0.512\;578\!\pm\!0.000\;009$	1.45			
09264GH2	T1264	10.6	38.4	0.166 887	0.512 402	$0.512\ 724 \pm 0.000\ 010$	2.80			
09AESGH1	T1265	3.58	14.0	0.154 594	0.512 314	$0.512\ 613 \pm 0.000\ 009$	1.10			
09CSGH8	T1266	3.67	14.1	0.157 361	0.512 447	$0.512\ 751 \pm 0.000\ 007$	3.69			
09DHLGH2	T1267	4.69	18.9	0.150 029	0.512 583	$0.512\ 873 \pm 0.000\ 007$	6.35			
09HBRGH2	T1268	3.34	13.2	0.152 976	0.512 450	0.512745 ± 0.000008	3.74			

0.146 363

37.3

注:取 t=310 Ma;Sm、Nd 含量采用 ICP-MS 测试结果.

9.03

T1269

负异常,表现出类似于岛弧环境的地球化学特征,也可能是陆壳物质加入混染的结果.但样品08MHGH8、08MHGH9和08MHGH10不具有Ta-Nb-Ti的负异常,其曲线形态与OIB(洋岛玄武岩)非常相似.

3.3 Nd 同位素

09HSPGH2

石炭纪火山岩 9 个样品的 Nd 同位素分析结果 列于表 2.样品的¹⁴⁷ Sm/¹⁴⁴ Nd = 0.124 3 ~ 0.166 9, ¹⁴³ Nd/¹⁴⁴ Nd = 0.512 565 ~ 0.512 873,总体上具有较 高的 $\epsilon_{Nd}(t)$ 值(+1.10 ~ +6.35),样品 08MHGH8、 08MHGH9 和 08MHGH10 的 $\epsilon_{Nd}(t)$ 值相对偏低 (+1.20 ~ +1.56).

4 讨论

4.1 岩石成因与构造环境

在微量元素蛛网图上(图 3b),样品 08MHGH8、08MHGH8和08MHGH10曲线形态 与 OIB 类似,表现出板内裂谷环境的地球化学特征;而其他样品则显示出与岛弧玄武岩相似的 Nb、Ta、Ti 负异常,但不相容元素的丰度总体上高于岛弧玄武岩,介于洋岛玄武岩和岛弧玄武岩之间,表现出板内和岛弧玄武岩双重性质的地球化学特征.

 $0.512\ 771 \pm 0.000\ 009$

0.512 488

虽然大多数样品具有 Nb-Ta-Ti 亏损等弧/碰 撞环境地球化学特征,但 Nb、Ta、Ti 亏损不一定和 岛弧/碰撞相联系,这很可能是受到大陆地壳物质混 染的结果(张旗等,1999;Ernst *et al.*,2005;夏林圻 等,2007).正常情况下,幔源(玄武质)岩浆在上升 穿过地壳时,或多或少都会发生地壳物质的混染.在 Zr/Nb-Ce/Yb 相关图(图 4a)和 La/Sm-Th/Nb 相 关图(图 4b)上,大多数样品分布在亏损洋脊玄武岩 (N-MORB)和大陆地壳(Buck Crust)组分之间,少 数样品(08MHGH8、08MHGH9 和 08MHGH10) 投影于 OIB 附近.样品的 Th 含量变化大(0.58~ 5.94), 除 样 品 08MHGH8、08MHGH9 和 08MHGH10 外,Nb/U 比值普遍很低(Nb/U=

图 4 阿拉善北部及其邻区石炭纪火山岩样品 Zr/Nb-Ce/Yb 图解(a)和 La/Sm-Th/Nb 图解(b)

Fig.4 Zr/Nb-Ce/Yb diagram (a) and La/Sm-Th/Nb diagram (b) of Carboniferous volcanics from the study area N-MORB.亏损 MORB; E-MORB, 富集 MORB; PM.原始地幔; Buck Crust.大陆地壳.其中, N-MORB, E-MORB, NM, OIB 数据引自 Sun and McDonough(1989); Buck Crust 数据引自 Rudnick and Gao(2003)

4.49

Fig.5 Tectonic discrimination diagrams of Carboniferous volcanics from the study area

a.Zr/Y-Zr 判别图(据 Pearce *et al.*,1979); b.V-Ti 判别图(据 Shervais,1982); c.Zr-Nb-Y 判别图(据 Meschede,1986), 其中,AI.为板内碱性玄武岩; AII.板内碱性玄武岩和板内拉斑玄武岩; B.E型 MORB; C.板内拉斑玄武岩和火山弧玄武岩; D.N型 MORB和火山弧玄武岩; d.Th-Hf-Ta 判别图(据 Wood,1980), 其中,A.N型 MORB; B.E型 MORB和板内拉斑玄武岩; C.板内碱性玄武岩; D.火山弧玄武岩, 其中岛弧拉斑玄武岩的 Hf/Th>3, 而钙碱性玄武岩的 Hf/Th<3

2.03~9.78),其中 OIB 和 MORB(洋脊玄武岩)Nb/ U比值为 47(Sun and McDonough,1989),球粒陨 石和原始地幔 Nb/U 比值为 34(Sun and McDonough,1989),大陆壳中 Nb/U 比值为 9.7(Rudnick and Gao,2003),这些现象都暗示这些火山岩样品普 遍受到地壳物质不同程度的混染;而样品 08MHGH8、08MHGH9 和 08MHGH10 的Nb/U= 39.3~42.3,暗示受地壳物质混染最少.

前人研究表明,大陆地壳物质的混染作用能够 产生类似岛弧环境地球化学特征的印记(例如:Nb、 Ta、Ti的负异常),使样品在用 Nb、Ta 或 Ti 作为判 别因子的地球化学图解上从"板内环境"向"弧"区漂 移,从而常会导致一些研究者将被混染的大陆(板 内)玄武岩误判为岛弧玄武岩(夏林圻等,2007).但 在没有 Nb、Ta 或 Ti 作为判别因子的地球化学图解 上,仍能反映出真实的构造背景信息.如,在 Zr/Y-Zr 相关图(Pearce and Norry,1979)上,所有样品由 于 Zr/Y 比值和 Zr 含量高而落入板内玄武岩范围 (图 5a);在 Ti-V 相关图(Shervais,1982)上,样品的 Ti/V 比值都在 20~100 之间,且主要集中在比值 50 左右,明显高于岛弧玄武岩,与 MORB 和 OIB 相 当(图 5b).而在 Zr-Y-Nb 判别图(Meschede,1986) 上,受地壳物质混染最少的样品 08MHGH8、 08MHGH9 和 08MHGH10 投影于板内玄武岩区, 而其他样品由于受地壳物质混染的影响导致 Nb、 Ta 亏损,落入板内拉斑玄武岩、火山弧玄武岩和 N 型 MORB 过渡区(图 5c);在 Th-Hf-Ta 判别图 (Wood,1980)上也有类似的情况(图 5d).大多数样 品正是因为受地壳物质不同程度的混染,在部分构 造环境判别图上的投影向"弧"区偏移,但受混染最 少的样品(08MHGH8、08MHGH9 和 08MHGH10) 更能反映岩浆形成的构造背景.

综上所述,结合本区石炭纪退积型沉积充填序 列和沉积建造特征所反映的伸展型区域构造沉积背

图 6 阿拉善北部及其邻区石炭纪火山岩样品的 Zr/Nb-Nb/Th 图解(a)和 Nb/Y-Zr/Y 图解(b)

Fig.6 Zr/Nb-Nb/Th diagram(a) and Nb/Y-Zr/Ydiagram(b) of Carboniferous volcanics from the study area PM.原始地幔;DM.亏损地幔;DEP.亏损组分;UC.上地壳;EMI.富集地幔 I型;EMII.富集地幔 II型;HIMU.高μ值地幔;REC.循环组分(底 图据 Condie,2005)

图 7 阿拉善北部及其邻区石炭纪火山岩样品的(Tb/Yb)_N-(La/Sm)_N 图解(Xu et al.,2001)(a)和 La/Sm-Sm/Yb 图解(Lassiter and DePaolo,1997; PM, DMM, CLM 数据据 McDonough, 1990)(b)

Fig.7 (Tb/Yb)_N-(La/Sm)_N diagram(a) and La/Sm-Sm/Yb diagram(b) of Carboniferous volcanics from the study area PM.原始地幔;DMM.亏损地幔;CLM.大陆岩石圈地幔

景,本文认为阿拉善北部及其邻区石炭纪火山岩应 形成于板内裂谷环境,与本区二叠纪早中二叠世火 山岩成因(党犇等,2011)、天山及邻区(包括吐一哈 盆地、三塘湖盆地、博格达造山带)石炭纪一二叠纪 火山岩成因类似(顾连兴等,2000;邢秀娟等,2004; 赵泽辉等,2004;郝建荣等,2006;赵泽辉等,2006;夏 林圻等,2008),即岩浆在上升过程中受到了地壳物 质不同程度的混染.

4.2 对天山(中亚)大火成岩的启示

已有研究表明(夏林圻等,2006,2008; Http:// www.largeigneousprovinces.org/06jun),天山及邻 区石炭一二叠纪很可能存在地幔柱作用和发育大火 成岩省.本文研究的阿拉善北部及其邻区石炭纪火 山岩形成于板内裂谷环境,很可能与地幔柱事件 有关.

在 Zr/Nb-Nb/Th 图解(图 6a)和 Nb/Y-Zr/Y 图解(图 6b)上,样品 08MHGH8、08MHGH9 和 08MHGH10 位于 ΔNb 线(地幔趋势线)以上,支持 岩浆作用的地幔柱成因(Fitton *et al.*,1997).而且 这 3 个样品投影于地幔柱尾区, $\epsilon_{Nd}(t)$ 值相对较低, 结合微量元素特征,暗示源区类似于 OIB,且地壳物 质混染不明显.其他样品则投影于受富集组分混染 区/地幔柱头区,且具有较高的 $\epsilon_{Nd}(t)$ 值,推测岩浆 可能起源于亏损地幔(DM),并受到不同程度地壳 物质的混染.

样品的 Ti 含量有一定的变化,由于 TiO₂ 含量 受结晶分异影响较大,Ti/Y 比值受结晶分异影响较 小,更能反映原始岩浆的 Ti 含量.以 Ti/Y=500 为 划分依据(Xu et al., 2001),可以看出,除样品 08MHGH8、08MHGH9 和 08MHGH10 为高 Ti 玄 武岩(Ti/Y=625~655)外,其他样品均属低 Ti 玄 武岩 $(Ti/Y = 193 \sim 352)$.在 $(Tb/Yb)_{N}$ - $(La/Sm)_{N}$ 图解(图 7a)和 La/Sm-Sm/Yb 图解(图 7b)上,低 Ti 玄武岩样品岩浆起源于较浅的尖晶石稳定域,而 高 Ti 玄武岩样品(08MHGH8、08MHGH9 和 08MHGH10)则起源于较深的石榴石稳定域,结合 前面关于微量元素、Nd 同位素的讨论,认为低 Ti 玄 武岩起源于较浅的尖晶石稳定域,可能位于地幔柱 头部区域,地幔柱头部不断有岩浆的抽取,源区极度 亏损,产生 $\varepsilon_{Nd}(t)$ 相对较高的岩浆,同时在岩浆(地 幔柱头部)不断上升过程中,不同程度地混染了地壳 物质,而高 Ti 玄武岩(08MHGH8、08MHGH9 和 08MHGH10)样品的岩浆起源于较深的石榴石稳定 域,来自于地幔柱尾部(类似于 OIB),源区相对富 集,而且受到地壳物质混染很少.

虽然天山地区石炭一二叠纪是否存在大火成岩 省还缺乏充分的证据,但本文研究的阿拉善北部及 其邻区石炭纪火山岩样品的地球化学特征,却显示 出岩浆地幔柱成因的迹象,很可能是天山(中亚)大 火成岩省在该地区的响应.

5 结论

阿拉善北部及其邻区石炭纪火山岩主要为中一 酸性火山岩,少量基性火山岩.亚碱性系列的玄武 岩、玄武安山岩和安山岩地球化学分析结果表明,石 炭纪火山岩形成于板内裂谷环境,岩浆在上升过程 中受到地壳物质的混染.岩石成因与天山及邻区石 炭纪一早二叠世裂谷火山岩具有类似的成因,岩浆 活动很可能与地幔柱事件有关.

致谢:感谢中国地质调查局西安地质调查中心 卢进才、冯益民研究员在研究工作的支持和帮助,感 谢匿名审稿专家提出的宝贵的意见和建议.

References

- Condie, K. C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes. *Lithos*, 79 (3 - 4): 491 - 504. doi: 10. 1016/j.lithos.2004.09.014
- Dang, B., Zhao, H., Lin, G.C., et al., 2011. Geochemistry and Tectonic Setting of Permian Volcanic Rocks in Yingen-Ejinaqi Banner Basin and Its Neighboring Areas, Inner

Mongolia, China. *Geological Bulletin of China*, 30(6): 923-931 (in Chinese with English abstract).

- Dobrestsov, N.L., Berzin, N.A., Buslov, M.M., 1995. Opening and Tectonic Evolution of the Paleo-Asian Ocean. International Geology Review, 37 (4): 335 - 360. doi: 10. 1080/00206819509465407
- Ernst, R.E., Buchan, K.L., Campbell, I. H., 2005. Frontiers in Large Igneous Province Research. *Lithos*, 79 (3 - 4): 271-297.doi:10.1016/j.lithos.2004.09.004
- Fitton, J.G., Saunders, A.D., Norry, M.J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. *Earth* and Planetary Science Letters, 153(3-4):197-208. doi:10.1016/S0012-821X(97)00170-2
- Gu,L.X., Hu,S.X., Yu,C.S., et al., 2000. Carboniferous Volcanites in the Bogda Orogenic Belt of Eastern Tianshan: Their Tectonic Implications. Acta Petrologica Sinica, 16(3):305-316(in Chinese with English abstract).
- Hao, J.R., Zhou, D.W., Liu, Y.Q., et al., 2006. Geochemistry and Tectonic Settings of Permian Volcanic Rocks in Santanghu Basin, Xinjiang. Acta Petrologica Sinica, 22 (1):189-198(in Chinese with English abstract).
- Lassiter, J.C., DePaolo, D.J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J.J., Coffin, M.F., eds., Large Igneous Province: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monography Series, American Geophysical Union, Washionton D.C..
- Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. *Journal of Petrology*, 27 (3):745-750.doi:10.1093/petrology/27.3.745
- Li, J. Y., Song, B., Wang, K. Z., et al., 2006. Permian-Mafic Ultramafic Complexes on the Southern Margin of the Tu-Ha Basin, East Tianshan Mountains: Geological Records of Vertical Crustal Growth in Central Asia. Acta Geoscientica Sinica, 27(5): 424-446 (in Chinese with English abstract).
- McDonough, W. F., 1990. Constraints on the Composition of the Continental Lithopheric Mantle. *Earth and Planeta*ry Science Letters, 101(1):1-18.doi:10.1016/0012-821X(90)90119-I
- Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites With the Nb-Zr-Y Diagram.*Chemical Geology*, 56(3-4), 207-218.doi:10.1016/0009-2541 (86)90004-5

- Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks. Contributios to Mineralogy Petrology, 69(1): 33-47. doi: 10.1007/BF00375192
- Ren, J.S., Wang, Z.X., Chen, B.W., 1999. The Brief Specification for the Tectonic Map (1: 5 000 000) of China and Adjacent Regions—A Global Look at Tectonics of China.Geology Publishing House, Beijing (in Chinese).
- Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust: Treatise on Geochemistry. Elsevier Science, Oxford.
- Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-108.doi:10.1016/0012-821X (82)90120-0
- Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalt: Implications for Mantle Composition and Processes. *Geological Society*, London, Special Publications, 42: 313-345. doi:10.1144/ GSL.SP.1989.042.01.19
- Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with Lajolla Neodymium. *Chemical Geology*, 168 (3 - 4): 279-281.doi:10.1016/S0009-2541(00)00198-4
- Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Black Well Science, Cambridge, Mass., USA.
- Wang, J.B., XU, X., 2006. Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1):23-31(in Chinese with English abstract).
- Wang, T. Y., Gao, J. P., Wang, J. R., et al., 1998. Magmatism of Collisional and Post-Orogenic Period in Northern Alaxa Region in Inner Mongolia. Acta Geologica Sinica, 72(2):126-137(in Chinese with English abstract).
- Wang, T. Y., Wang, J. R., Wang, S. Z., 1992. Discovery and Tectonic Significance of Engerwusu Ophiolite Melange Belt in Northern Alaxa Region in Inner Mongolia. Journal of Lanzhou University (Nature Science), 18(2): 194-196(in Chinese).
- Wang, T. Y., Wang, S. Z., Wang, J. R., 1994. The Formation and Evolution of Paleozoic Continental Crust in Alaxa Region. Lanzhou University Press, Lanzhou (in Chinese).
- Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. *Earth and Planetary Science Letters*, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7

- Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crust Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. *Earth and Planetary Science Letters*, 50(1):11-30. doi:10.1016/0012-821X(80)90116-8
- Wu, T. R., He, G. Q., 1992. Ophiolitic Melange Belts in the Northern Margin of the Alashan Block. *Geoscience*, 6 (3): 286-296(in Chinese with English abstract).
- Xia, L.Q., Li, X.M., Xia, Z.C., et al., 2006. Carboniferous-Permian Rift-Related Volcanism and Mantle Plume in the Tianshan, Northwestern China. Northwestern Geology, 39(1):1-49(in Chinese with English abstract).
- Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2007. The Discrimination Between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26(1):77-89(in Chinese with English abstract).
- Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2008. Petrogenesis of Carboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and Its Neighboring Areas, Northwestern China. Northwestern Geology, 41(4):1-68(in Chinese with English abstract).
- Xiao, W.J., Han, C.M., Yuan, C., et al., 2006. Unique Carboniferous-Permian Tectonic-Metallogenic Framework of Northern Xinjiang (NW China): Constraints for the Tectonics of the Southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062 - 1076 (in Chinese with English abstract).
- Xing, X.J., Zhou, D.W., Liu, Y.Q., et al., 2004. Geochemistry of Early Permian Volcanic Rocks and Their Tectonic Settings from the Turpan-Hami Basin, XinJiang. Xinjiang Geology, 22(1):50-55(in Chinese with English abstract).
- Xu, Y. G., Chung, S. L., Jahn, B., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58 (3-4): 145-168. doi: 10.1016/S002 4-4937(01)00055-X
- Zhang, X. H., Huang, X., Chen, J. P., et al., 2012. Stratigraphical Sequence of Carboniferous Marine Volcanic-Deposit Rock and Its Geological Age in Jueluotage Area, Eastern Tianshan. Earth Science—Journal of China University of Geosciences, 37(6):1305-1314(in Chinese with English abstract).
- Zhao, X. M., Chen, D. C., Deng, J., 2010. Depositional Characteristic of Permo-Carboniferous System from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia,

China and It Implications for Petroleum. *Acta Geologica Sinica*, 84(8):1183-1194(in Chinese with English abstract).

- Zhao, X. M., Chen, D. C., Deng, J., et al., 2011. Depositional Characteristics and Their Geological Implications of the Permo-Carboniferous Carbonate Rocks from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia, China. Earth Science—Journal of China University of Geosciences, 36(1):62-72(in Chinese with English abstract).
- Zhao, Z. H., Guo, Z. J., Han, B. F., et al., 2006. The Geochemical Characteristics and Tectonic-Magmatic Implications of the Latest-Paleozoic Volcanic Rocks from Santanghu Basin, Eastern Xinjiang, Northwest China. Acta Petrologica Sinica, 22(1):199-214(in Chinese with English abstract).
- Zhao, Z. H., Guo, Z. J., Zhang, Z. C., et al., 2004. The Geochemical Characteristics and Tectonic Setting of The Lower Permian Basalts in Hongliuhe Area at the Border between Xinjiang and Gansu Provinces. Geological Journal of China Universities, 10 (4): 545 - 553 (in Chinese with English abstract).
- Zhou, D.W., Liu, Y.Q., Xing, X.J., et al., 2006. Formation of the Permian Basalts and Implications of Geochemical Tracing for Paleo-Tectonic Setting and Regional Tectonic Background in the Turpan-Hami and Santanghu Basins, Xinjiang. Science in China (Series D), 49 (6) 584-596.doi:10.1007/s11430-006-0584-1
- Zhou, L.F., Zhao, Z.Y., Guo, Z.M., 1995. Formation and Evolution of the Sedimentary Basins in Alaxa and Adjacent Regions.Northwest University Press, Xi'an, 57-92 (in Chinese).

附中文参考文献

- 党犇,赵虹,林广春,等,2011.内蒙古西部银根一额济纳旗盆 地及邻区二叠纪火山岩的地球化学特征和构造环境. 地质通报,30(6):923-931.
- 顾连兴,胡受奚,于春水,等,2000.东天山博格达造山带石炭 纪火山岩及其形成地质环境.岩石学报,16(3): 305-316.
- 郝建荣,周鼎武,柳益群,等,2006.新疆三塘湖盆地二叠纪火 山岩岩石地球化学及其构造环境分析.岩石学报,22 (1):189-198.
- 李锦轶,宋彪,王克卓,等,2006.东天山吐哈盆地南缘二叠纪 幔源岩浆杂岩:中亚地区陆壳垂向生长的地质记录.地 球学报,27(5):424-446.

- 任纪舜,王作勋,陈炳蔚,1999.1:500万中国及邻区大地构 造图及简要说明——从全球看中国大地构造.北京:地 质出版社.
- 王京彬,徐新,2006.新疆北部后碰撞构造演化与成矿.地质学 报,80(1):23-31.
- 王廷印,高军平,王金荣,等,1998.内蒙古阿拉善北部地区碰 撞期和后造山期岩浆作用.地质学报,72(2):126-137.
- 王廷印,王金荣,王士政,1992.阿拉善北部恩格尔乌苏蛇绿 混杂岩带的发现及其构造意义.兰州大学学报(自然科 学版),18(2):194-196.
- 王廷印,王士政,王金荣,1994.阿拉善古生代陆壳的形成和 演化.兰州:兰州大学出版社.
- 吴泰然,何国琦,1992.阿拉善地块北缘的蛇绿混杂岩带及其 大地构造意义.现代地质,6(3):286-296.
- 夏林圻,李向民,夏祖春,等,2006.天山石炭一二叠纪大火成 岩省裂谷火山作用与地幔柱.西北地质,39(1):1-49.
- 夏林圻,夏祖春,徐学义,等,2007.利用地球化学方法判别大 陆玄武岩和岛弧玄武岩.岩石矿物学杂志,26(1): 77-89.
- 夏林圻,夏祖春,徐学义,等,2008.天山及邻区石炭纪一早二 叠世裂谷火山岩岩石成因.西北地质,41(4):1-68.
- 肖文交,韩春明,袁超,等,2006.新疆北部石炭纪一二叠纪独 特的构造一成矿作用:对古亚洲洋构造域南部大地构 造演化的制约.岩石学报,22(5):1062-1076.
- 邢秀娟,周鼎武,柳益群,等,2004.吐一哈盆地及周缘早二叠 世火山岩地球化学特征及大地构造环境探讨.新疆地 质,22(1):50-55.
- 张旗,钱青,王焰,1999.造山带火成岩地球化学研究.地学前 缘,6(3):113-120.
- 张雄华,黄兴,陈继平,等,2012.东天山觉罗塔格地区石炭纪 火山-沉积岩地层序列及地质时代.地球科学—— 中国地质大学学报,37(6):1305-1314.
- 赵省民,陈登超,邓坚,2010.银根一额济纳旗及邻区石炭 系一二叠系的沉积特征及石油地质意义.地质学报,84 (8):1183-1194.
- 赵省民,陈登超,邓坚,等,2011.银根一额济纳旗及邻区石炭一二叠纪碳酸盐岩的沉积特征及其地质意义.地球科学——中国地质大学学报,36(1):62-72.
- 赵泽辉,郭召杰,韩宝福,等,2006.新疆三塘湖盆地古生代晚 期火山岩地球化学特征及其构造一岩浆演化意义.岩 石学报,22(1):199-214.
- 赵泽辉,郭召杰,张志诚,等,2004.新甘交界红柳河地区下二 叠统玄武岩地球化学特征及其形成的构造背景.高校 地质学报,10(4):545-553.
- 周立发,赵重远,郭忠铭,1995.阿拉善及邻区沉积盆地的形成与演化.西安:西北大学出版社,57-92.