doi:10.3799/dqkx.2014.099

保山地块西缘早古生代增生造山作用

毛晓长^{1,2}, 尹福光³, 唐 渊³, 王冬兵³, 廖世勇³, 熊昌利⁴

1.中国地质大学地球科学与资源学院,北京 100083 2.中国地质调查局,北京 100037 3.成都地质矿产研究所,四川成都 610081 4.四川省地质调查院,四川成都 610081

摘要:在保山地块西缘泸水-潞西构造带内,出露-套构造混杂岩.主体为强变形的震旦系-古生界蒲满哨群、公养河群浅变 质碎屑岩夹碳酸盐岩及火山岩等复理石浊积岩系等构成,另有硅质岩、杂砂岩、灰岩、砾岩、玄武岩及花岗岩等弱变形的构造 块体.岩石时代从震旦纪至古生代,跨度大,高度混杂,并有从东向西变新的逐势,表现为后退式增生.构造样式早期为同斜倒 转冲断作用的叠瓦构造,后期表现为近 N-S 向剪切.玄武安山岩、流纹岩类具弧火山岩特征,而玄武岩类则为板内火山岩,2 种 火山岩分别对应岛弧与弧后拉张洋盆产物,寒武纪,奥陶纪侵位的花岗岩也分为东西2个带,西晚东早,代表了保山陆块西缘 岩浆弧的一部分.这样就记录了洋壳俯冲消亡、增生楔形成过程的沉积、火山一岩浆、变质和构造变形的地质事件群,也记录了 保山地块西缘早古生代增生造山形成过程的地质事件,并证明了泸水一潞西构造带在震旦纪一古生代存在一洋盆. 关键词:保山地块;早古生代;增生造山作用;岩石学;沉积;构造. **收稿日期**: 2014-06-15

中图分类号: P542 **文章编号:**1000-2383(2014)08-1129-11

Early Paleozoic Accretionary Orogenesis on Western Margin of Baoshan Block

Mao Xiaochang^{1,2}, Yin Fuguang³, Tang Yuan³, Wang Dongbing³, Liao Shiyong³, Xiong Changli⁴

1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China 2. China Geological Survey, Beijing 100037, China 3. Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, China

4. Sichuan Institute of Geological Survey, Chengdu 610081, China

Abstract: On the western margin of the Baoshan block, a set of tectonic mélange can be seen along the western Lushui-Luxi tectonic zone. It is characterized by matrices consisting of strongly deformed and low-grade metamorphic clastic rocks bearing graptolite of Sinian-Paleozoic Pumanshao Group and Gongyanghe Group and volcanic flysch turbidite, and structural lens consisting of siliceous, graywacke, part limestone, conglomerate, basalt and granite. The ages of these rocks range from Sinian to Paleozoic and get younger from east to west, which shows the characters of retrogressive accretion. In the early stage, the structural styles are characterized by imbricate structures formed by thrust faults and homoclinal-overturned folds, and nearly N-S-trending shear in the late stage. The characteristics of basalt-andesite and rhylite are of arc volcanic rocks, and the basalt shows characteristics of continental intraplate volcanic rocks. Both of the two types of volcanic rocks maybe account for the tectonic setting of island arc and back-arc extension. Cambrian and Ordovician granite can be divided into the western belt and eastern belt, and the ages of the latter are earlier than that of the former. Those granites are part of magmatic arc of the western margin of the Baoshan block. Therefore, this tectonic mélange records the geological events such as extinction to the subduction of the oceanic crust and magmatic sedimentation-volcanic-magmatic-tectonic events during the formation process of accretionary wedge, and also records the information of the Early Paleozoic accretionary orogenesis on the western margin of the Baoshan block. Meanwhile, it suggests the existence of an ocean basin during Sinian-Paleozoic in the Lushui-Luxi tectonic zone. Key words: Baoshan block; Early Paleozoic; accretionary orogenesis; petrology; sedimentology; tectonics.

基金项目:中国地质调查项目(Nos.1212011220412,12120113049100,12120113050300).

作者简介:毛晓长(1979-),男,博士研究生,主要从事区域地质研究及管理.E-mail: xmaoteng@163.com

0 引言

增生型造山带是 20 世纪 90 年代提出的一种造 山带类型(Windley, 1992; Sengör et al., 1993; Sengör and Natal'In, 1996),近年来增生造山过程 的研究受到越来越多的重视(Cawood et al., 2003; 李继亮, 2004; Condie, 2005; Sengör, 2006; Jahn, 2007;袁四化等, 2009)并成为许多重要国际会议的 议题.增生型造山带的提出丰富了造山带的研究,但 是对增生型造山带的定义和增生型造山作用的理解 尚不一致.

Cawood et al.(2003)将增生型造山带定义为: 形成在大洋岩石圈俯冲的位置,由岩浆弧体系和下 插板块增生物质以及上覆板块侵蚀物质组成,是大 陆岩石圈通过新生岩浆的增加而增生,也包括太古 宙绿岩带、古元宙的 Birimian 造山带(西非)、阿拉 伯一奴比亚地盾(泛非)和亚洲显生宙的造山带,同 时也是陆壳消减和改造的主要场所.Sengör et al. (1993)和 Sengör and Natal'In(1996)把突厥型造山 作用认为是一种碰撞造山作用,其在碰撞发生前,碰 撞大陆其中之一或双方就包含大量的、具有次大陆 尺度的俯冲增生杂岩体,岩浆弧的轴通常向着该杂 岩体迁移,因而导致所依附的大陆增生.

李继亮(2004)评述了增生型造山带的基本特征:具有很宽的增生楔,增生楔中的复理石基质向着海沟后退方向时代逐渐变新;增生楔中有多条蛇绿岩带,是海沟后退到适宜的构造位置时沿滑脱断层就位形成的;增生型造山带中有多条钙碱性火山岩和花岗岩带,其生成时代也向着海沟后退方向变新;增生地体内含有海山、大洋岛和大洋台地的构造碎块;增生型造山带中具有多条韧性剪切带,可能是蛇绿岩构造就位的滑脱带;增生型造山带含有大型超大型铜、金和多金属矿床.

此外,其他学者也对增生型造山带的特征作过 描述归纳,总体上认为增生型造山带是形成于板块 汇聚的过程中,由大量增生的地壳和岩石圈块体组 成,增生体主要有增生杂岩体、岛弧、大陆碎块、蛇绿 岩残片、洋底高原和海山,是大陆生长的重要方式. 增生造山过程表现为洋壳消减产生岛弧或陆缘弧的 过程,包括增生杂岩的侧向生长、弧一弧和弧一陆拼 贴等过程,双变质带也是增生的一部分.按造山作用 的概念来归纳,可分为2种造山作用,即前锋弧的弧 前增生造山作用或突厥型造山作用和弧后萎缩造山 作用(袁四化等,2009). 班公湖-怒江结合带因位于冈瓦纳大陆与泛华 夏大陆交接部位,历年来为中外地质学家所关注,其 向东南的延伸问题一直存在不同的观点:是接泸 水-潞西结合带、昌宁-孟连结合带还是南澜沧江 结合带(谭敏和詹五第,1990;张旗等,1996;潘桂棠 等,1997;李兴振等,1999;刘本培等,2002;储著银 等,2009).

泸水一潞西构造带是否存在洋盆,其问题的关 键是对这一带的浅变质构造混杂岩时代及性质的认 识,该构造混杂岩为一套浅变质的碎屑岩夹碳酸盐 岩及火山岩建造,1:25万潞西市幅区域地质调查 将其解体为震旦系一古生界蒲满哨群、公养河群;其 次就是对寒武纪一奥陶纪花岗岩构造属性的认识, 界定其是否属于早古生代增生作用的岩石学记录成 为关键;泸水一潞西构造带中,中泥盆统景坎组与下 伏奥陶系一志留系之间的不整合关系是否也反映了 碰撞作用过程中的沉积学记录;再者,是对泸水一潞 西断裂带的构造形态及样式的认知,现今总体表现 出一系列逆冲断裂向东推覆在保山地块之上,断裂 带内部发育同斜、等斜、无根褶皱等,各地质体岩性 混杂、时代混杂.

本文对以上问题进行了分析,论证了泸水一潞 西断裂带现为增生杂岩带,在早古生代发生了增生 造山作用,进一步认为此带早古生代存在洋盆.

1 区域地质概况

保山地块属于泛华夏大陆晚古生代一中生代羌 塘一三江构造区之喀喇昆仑一南羌塘一保山一掸邦 陆块一部分,西与冈底斯一喜马拉雅构造区之拉达 克一冈底斯一拉萨一腾冲陆块相邻,东为昌宁一孟 连板块结合带,为冈瓦纳大陆北部大陆边缘组成部 分(图 1).

保山地块西缘泸水-潞西构造带是指怒江一瑞 丽断裂西支(F₁)与怒江-瑞丽断裂东支(F₂)所狭 持的南北向长条状区域(图 2).地层出露情况较为 复杂,既有大面积出露的斜坡-盆地相的震旦系-寒武系公养群、古生界蒲满哨群和三叠系杂多组,也 有浅海、陆相的奥陶系、泥盆系、二叠系和三叠系沉 积物.火山岩呈夹层产出于蒲满哨群,并已变质,仅 少数残留有火山岩结构,与变质碎屑岩间多为次生 面理接触.寒武纪-奥陶纪花岗岩侵入的围岩为蒲 满哨群、公养河群,主体为片麻状似斑状黑云二长花 岗岩.在三台山等地还有一些地幔橄榄岩.泸水-潞

I.华南板块;I.三江造山系;II.哀宰山结合带;II2.墨江一绿春陆 缘弧;II3.昌都一思茅地块;II4.云县一景谷火山弧;II5.澜沧江结 合带;II6.临沧一勐海岩浆弧;II.昌宁一孟连结合带;N.冈底斯一 腾冲陆缘造山系;N1.保山一镇康地块;N2.潞西一三台山结合带; N3.冈底斯一腾冲岩浆弧;N4.腾冲一梁河岩浆弧

西断裂带内部以泸水一龙陵断裂(F₃)为界,西部变 质变形强,表现为构造混杂岩带;东部变质变形弱, 发育岩浆岩,表现为浊积岩盆地一岩浆杂岩带组合 的褶冲带(图 2).

2 早古生代活动大陆边缘不同类型增 生地体的确定

2.1 增生楔的物质组成和上叠盆地的确定

增生楔主要由震旦一寒武纪公养河群、古生代 蒲满哨群组成.公养河群主体为复理石碎屑岩,包括 有杂砂岩、泥岩,夹硅质岩、硅质泥岩、白云岩等,产 海绵骨针、三叶虫碎片、微古植物及遗迹化石,为斜 坡一盆地相沉积.蒲满哨群为钙质板岩、大理岩、微 晶灰岩、棘屑灰岩与变质长石石英砂岩、粉砂质板 岩、雏晶黑云(绢云)板岩、泥质板岩不等厚互层;在 蒲满哨等地,变质细碎屑岩中还夹有变质基性火山 岩;在泸水县附近夹变质流纹岩;表现为一套深水陆 棚一斜坡环境的细碎屑岩夹碳酸盐岩沉积,代表裂 陷一拉张环境.次为寒武纪一奥陶纪花岗岩.

上叠盆地为奥陶系大矿山组、潞西组,为紫红、 灰白色中厚层状石英砂岩、长石石英砂岩、砾岩、砂 砾岩,其沉积环境下部为冲积扇的沉积,上部为滨海相,与下伏地层为不整合接触关系(云南省地质调查院,云南1:25万腾冲县幅、潞西市幅区域地质调查报告,2008).

2.2 不同构造环境火山岩单元

构造混杂岩中的火山岩分为两大类:一类原岩 为玄武岩,现已变质为斜长角闪岩、斜长角闪片岩、 角闪绿帘斜长片岩、黑云角闪斜长片岩、黑云角闪斜 长变粒岩、变质玄武岩等, SiO2 含量 44.88%~ 50.78%,碱含量低,TiO₂、P₂O₅含量高,FeO*/ MgO=2.76~3.97 较高, A/CNK<1.1, 具拉斑武玄 岩特点,稀土配分曲线、微量元素配分曲线与板内碱 性玄武岩相似,特征参数 K*、Sr*、P* 均小于 1,而 Nb*、Zr*、Ti*均大于1,表明火山岩岩浆源于地幔 且与消减作用无关,受地壳物质混染较弱;另一类原 岩为玄武安山岩和流纹岩,SiO2含量 53.87%~ 73.72%,全碱,TiO₂、P₂O₅含量低,FeO*/MgO= 1.46~2.06 中等, A/CNK<1.1, 具钙碱性火山岩特 点,稀土配分曲线(图 3a)、微量元素配分曲线(图 3b)与钙碱性火山岩相似,特征参数 Zr* 均大于 1, Nb*、Sr*、P*、Ti*小于1,K*均大于或小于1,表明 火山岩岩浆活动与消减作用有关,且岩浆受地壳物 质的同化混染强烈,为岛弧型火山岩.

在 A. Rittman 的 lgτ-lgσ 图及 lgτ-lg(σ25× 100)图上(云南省地质调查院,云南1:25万腾冲县 幅、潞西市幅区域地质调查报告,2008),玄武安山 岩、流纹岩类投点位于 B 区和 C 区,具造山带(岛弧 或活动大陆边缘)火山岩特征,而玄武岩类投影点位 于 A 区,具板内火山岩特征.在 Pearce 的 F_1 - F_2 图 上(云南省地质调查院,云南1:25万腾冲县幅、潞 西市幅区域地质调查报告,2008),玄武安山岩、流纹 岩类投影点多数位于 CAB 区及 SHO 区,具岛弧或 活动大陆边缘火山岩特征,而玄武岩类投点位于 WPB 区,具板内火山岩特征.FeO*-MgO-Al₂O₃图 上,玄武安山岩、流纹岩类投点多数位于造山带内 (岛弧或活动大陆边缘),具岛弧或活动大陆边缘火 山岩特征,而玄武岩类投点位于大陆板内区,具板内 火山岩特征.在 Pearce 的火山岩 Ti-Zr 图上(图 4a), 玄武安山岩、流纹岩类火山岩投点位于火山弧区,玄 武岩类投点位于板内火山岩区;在 Ti/100-Zr-3Y 判 别图上(图 4b), 玄武安山岩、流纹岩类火山岩投点 位于岛弧钙碱性火山岩区,玄武岩类投点位于板内 火山岩区.在 TFeO-MgO-Al₂O₃ 图解中,玄武岩样 品投影于洋岛玄武岩区.

图 2 保山地块西缘地质简图(云南省地质调查院,云南1:25万腾冲县幅、潞西市幅区域地质调查报告,2008)

Fig.2 Geological map of the western margin of the Baoshan block

1.第四系;2.新近系;3.古近系;4.侏罗系一白垩系;5.三叠系(?);6.奥陶系一志留系;7.上古生界;8.下古生界;9.蒲满哨群;10.公养河群;11. 新元古界;12.古元古界;13.古近纪花岗岩;14.晚白垩世花岗岩;15.早白垩世花岗岩;16.早白垩世花岗闪长岩;17.侏罗纪花岗岩;18.三叠纪 花岗岩;19.三叠纪超基性岩;20.奥陶纪花岗岩;21.中元古代花岗岩;22.分区断裂及编号;23.一般断裂及编号;24.糜棱岩带;25.超糜凌岩 带;26.背斜轴线;27.向斜轴线;28.角度不整合界线;29.火山喷发不整合界线;30.构造层及岩体界线;31.居民点;32.山峰;33.水系

在微量元素蛛网图中(图 3b),表现了不一致的特征,表明了火山岩成因的复杂性.但能够清晰地看出其中几组数据所显示的一致性特点:强不相容性元素 Rb、Th、Ce 等强烈富集,大离子亲石元素 Ba、K、Sr 均表现出比较明显的负异常,高场强元素 Sc、P、Ti 表现不同程度的负异常,而 Nb、Ta、Zr、Sm 等表现出比较混乱的模式.火山岩 Rb/Sr 较小在

 $0.03 \sim 0.26$,平均值为 0.16,多小于大陆壳 Rb/Sr 比 值(0.24); K/Rb 在 65.08 ~ 338.36,平均值为 180.85; Sr/Ba 比值在 1.24 ~ 4.46 之间,平均值为 2.64; Nb/Ta 值主要在 8.81 ~ 24.00,平均为 23.47; Th/U 值在 1.33~4.88,平均值为 3.18.稀土元素总 量 Σ REE为 87.36 × 10⁻⁶ ~ 255.1 × 10⁻⁶,平均为 186.96×10⁻⁶; Σ Ce / Σ Y 主要在 0.95~4.29, (La/

- 图 3 保山地块西缘火山岩稀土元素配分图(a)和微量元素比值蛛网图(b)(据云南省地质调查院,云南1:25万腾冲县幅、潞西市 幅区域地质调查报告,2008)
- Fig.3 Chondrite-normalized REE patterens diagrams (a) and primitive mantle-normalized trace elements spider diagrams (b) of the volcanic rocks in western Baoshan block

图 4 泸水 - 潞西火山岩带 Ti-Zr 图解(a)和 Ti/100-Zr-3Y 图解(云南省地质调查院,云南1:25 万腾冲县幅、潞西市幅区域地质调查 报告,2008)

Fig.4 Discrimination Ti-Zr diagrams (a) and discrimination Ti/100-Zr-3Y diagrams (b) of tectonic environment of Lushui-Nujiang volcanic zone

Yb)_N 在 1.51~9.10;δEu 变化大为 0.72~1.80,平 均为 1.11;Ce 在 0.67~1.11,平均为 0.95.稀土元素 分布模式曲线(图 3a)大致表现出两组不同的特点, 安山岩组为略向右倾的较平滑的 LREE 富集模式, 具较弱的 Eu 负异常;玄武岩组表现为略向右倾的 "V"型的稀土配分模式,具有较明显的 Eu 正异常. 两者 HREE 分配系数变化不大,在模式曲线上 Ho-Lu 均较平坦,Y/Yb 比值大多在 10.00 左右(9.30~ 11.87),平均为 10.20.

稀土元素与微量元素图解判别均显示:玄武安 山岩、流纹岩类具弧火山岩特征,而玄武岩类则为板 内火山岩.推测2种火山岩可能是岛弧与弧后拉张 产物,玄武岩类也可能为洋壳(海山),表现为同一时 期内两种性质截然不同的火山岩同时存在.

杨学俊等(2012)对帮迈乡瓦窑附近斜长角闪岩的锆石进行 LA-ICP-MS U-Pb 测年分析,锆石晶体 形态及大小一致,呈长柱状自形晶,环带结构发育, 为典型的原生岩浆结晶锆石.对样品的 20 颗锆石进 行分析并经过数据处理后,其中 17 颗锆石数据位于 谐和线上或其附近,其²⁰⁶ Pb/²³⁸ U 年龄加权平均值 为 501±1.0 Ma(n=15, MSWD=2.9),代表了岩浆 结晶的年龄,确定其岩浆结晶时间为中寒武世一上 寒武世.

2.3 增生岩浆弧的确定

寒武纪一奥陶纪中酸性一酸性侵入岩主要岩石 类型为中细粒黑云二长花岗岩和似斑状中粒一中粗 粒黑云二长花岗岩.寒武纪一奥陶纪侵位的花岗岩 也分为东西两个带,它们分别发育于怒江一瑞丽断 裂西支及泸水一龙陵断裂的东缘.

东带以平河岩体为代表,主要岩石类型为中细 粒黑云二长花岗岩和似斑状中粒一中粗粒黑云二长 花岗岩.稀土元素配分曲线呈右倾斜型(图 5a),微量 元素(图 5b)总体上显示了富集 K、Sr、Rb、Ba 等大 离子亲石元素,亏损 Zr、Ta、Nb、Th 等高场强元素 的特点(云南省地质调查院,云南 1:25 万腾冲县 幅、潞西市幅区域地质调查报告,2008).

董美玲等(2012)对平河岩体的研究表明,K₂O/ Na₂O值大于1,铝饱和指数(A/CNK)为1.07~

- Fig.5 Chondrite-normalized REE patterens diagrams (a) and primitive mantle-normalized trace elements spider diagrams (b) of the Ordovician granite in western Baoshan block

1.10,属高钾钙碱性过铝质花岗岩.岩石总体上富集 大离子亲石元素和 Pb,亏损高场强元素;明显富集 轻稀土元素[(La/Yb)_N=4.33~7.05],显示明显的 负 Eu 异常(δ Eu=0.25~0.48).锆石 $\epsilon_{\rm Hf}(t)$ 值变化 范围较大(主要集中于-12.4~-3.0之间),对应的 Hf 同位素地壳模式年龄集中于 2.2~1.7 Ga.这些地 球化学特征指示此带内的花岗岩属于 S 型花岗岩, 主要来源于古老地壳物质(如砂屑岩)的重熔,并不 同程度地混入了幔源物质.测得平河岩体的锆石 U-Pb年龄变化于 480~486 Ma,表明这些花岗岩类 侵位于早奥陶世.

如图 6 中,投点分散,大多数样品落入碰撞前、 火山弧、同碰撞花岗岩区,表明花岗岩的形成应为增 生挤压环境(云南省地质调查院,云南 1:25 万腾冲 县幅、潞西市幅区域地质调查报告,2008). 西带沿三台山村-正平乡-镇安镇-黄草坝-动冒-龙新-线呈 N-S 向展布.奥陶纪花岗岩主要 为中粒似斑状黑云母二长花岗岩、细-中粒黑云母 二长花岗岩、中粗粒黑云母二长花岗岩、细粒黑云母 花岗闪长岩、粗粒黑云母钾长花岗岩、碎裂中细粒花 岗闪长岩、糜棱岩化黑云母二长花岗岩.花岗岩 Rb/ Sr 变化较大,为 0.11~35.9,平均值为 8.33;K/Rb 在 74.88~316.15,平均值为 152.98;Sr/Ba 比值大 多小于 0.50,主要在 0.07~0.24 之间,平均值为 0.18;Nb/Ta 值在 5.51~16.89,平均为 9.81;Th/U 值在 2.2~12.0,平均值为 6.49.在微量元素蛛网图 中(图 7a),大离子亲石元素 Ba 呈明显负异常,Sr 强 烈亏损并呈负异常,而 Rb 强烈富集且表现正异常, K 呈正异常.高场强元素 P、Ti 强烈亏损并呈负异 常,Nb呈负异常,而大部分高场强元素如Th、La、

- 图 6 保山地块西缘奥陶纪花岗岩的 R₁-R₂ 图解(a)和 Rb/30-Hf-3Ta 图解(b)(云南省地质调查院,云南1:25 万腾冲县幅、潞西 市幅区域地质调查报告,2008)
- Fig.6 Discrimination R_1 - R_2 diagrams (a) and discrimination Rb/30-Hf-3Ta diagrams (b) of the Ordovician granite in western Baoshan block

1.地幔分异的花岗岩;2.碰撞前花岗岩;3.碰撞后隆起的花岗岩;4.造山晚期一晚造山期花岗岩;5.非造山区花岗岩;6.同碰撞花岗岩;7.造山期 后的花岗岩 Nd、Y 等呈较明显的正异常.此外,可以看出,寒武 纪花岗岩中 Ba、Sr、P、Ti 的负异常程度普遍比奥陶 纪花岗岩强,反映了随着岩浆的演化 Ba、Sr、P、Ti 逐渐富集的过程.稀土元素总量 Σ REE为 79.77× $10^{-6} \sim 408.31 \times 10^{-6}$,平均为 231.84×10^{-6} ; Σ Ce / Σ Y 主要在 $1.32 \sim 3.5$,(La/Yb)_N 一般在 $2.16 \sim$ 10.77;Eu 具强烈的负异常, δ Eu 为 $0.06 \sim 0.8$,平均 为0.38;Ce 略具较弱的负异常, δ Ce 主要在 $0.82 \sim$ 0.96,平均为0.94.稀土元素分布模式曲线(图 7b)表 现为向右倾的 LREE 富集模式,较平滑,并显示出 明显的 Eu 负异常,为较典型的海鸥型稀土配分模 式.HREE 分配系数变化不大,在模式曲线上 Ho-Lu 均较平坦,Y/Yb 比值大多在 10.00 左右,一般在 $8.09 \sim 12.08$ (熊昌利等,2012).

熊昌利等(2012)获得硝塘乡岩体及南侧勐冒岩体(东带)的2件花岗岩石U-Pb测年数据,其²⁰⁶Pb/²³⁸U年龄加权平均值分别为454.7±1.5 Ma. 刘琦胜等(2012)测得板厂山岩体(西带)二云二长花 岗质糜棱片麻岩的SHRIMP 锆石U-Pb年龄为 473±7 Ma.这样表现出岩浆弧的分带性,西带就位 晚而东带就位早,可能代表了早古生代保山地块西 缘与增生作用有关的岩浆弧.

2.4 三台山蛇绿岩的确定

三台山超基性岩带零星出露于潞西市三台山-炳弄-营盘寨等地,大致延龙陵-瑞丽大断裂断续 分布,岩石主要由强蛇纹石化的斜方辉石橄榄岩和 纯橄榄岩组成.岩石和围岩(早白垩世砂岩)经历了 后期强烈的变质-变形改造,主要表现为左行和右 行并存的韧性剪切特征.目前,三台山超基性岩的成 因和构造地质意义存在不同认识,争论的焦点集中 于其是否代表蛇绿岩的组成部分,即是大洋岩石圈 地幔残片,还是代表大陆地幔残片? 部分学者认为, 三台山超基性岩可能代表蛇绿混杂岩或无根的蛇绿 岩残片,龙陵一瑞丽大断裂可能代表板块缝合带(谭 敏和詹五第,1990;刘本培等,2002).张旗等(1996) 和钟大赉(1998)则认为,潞西地区缺乏存在蛇绿岩 的证据,尽管三台山超镁铁岩属于强亏损的方辉橄 榄岩或纯橄榄岩,但可能并非大洋岩石圈地幔残余, 该区堆晶橄榄岩和玄武岩均富 LREE,应为板内拉 张作用的产物,地层记录中也无洋壳存在的证据.储 著银等(2009)认为三台山超镁铁岩 Os 模式年龄为 0.97~1.71 Ga,Nd 同位素(ε_{Nd}为-6.2~-10.6)亦 反映该岩体来自富集的岩石圈地幔,并认为该区岩 石圈地幔的形成时代为中元古代.

结合区域地质调查资料对三台山超基性岩的地 球化学分析揭示,SiO2含量 39.26%~42.54%,由 于岩石均已发生蚀变,选择不活泼元素 Zr/TiO2-Nb/Y 分类图(中国地质调查局成都地质调查中心, 云南1:5万梁河幅、江东幅、帕底幅区域地质调查 报告,2011),结果部分落入碱性玄武岩区,部分落入 亚碱性区.标准矿物计算,岩石中不含石英分子,普 遍含刚玉,说明为铝过饱和.m/f 值均大于 6.5,在 10.18~11.95 间,属镁质超基性岩.Mg[#]在 91.12~ 92.36之间,岩石中TiO2、CaO、K2O、Na2O均较低, MgO极高(37.26%~39.62%).稀土含量相对较低, Σ REE 总量在 0.15×10⁻⁶~3.74×10⁻⁶,平均为 1.32×10^{-6} , LREE 为 $0.11 \times 10^{-6} \sim 3.08 \times 10^{-6}$, HREE 为 $0.03 \times 10^{-6} \sim 0.67 \times 10^{-6}$, REE/HREE= 1.14~10.84. 球粒陨石标准化稀土配分曲线呈向弱 的右倾斜曲线,可能为地幔岩部分熔融形成.平坦的 重稀土分布表明,源区深部不存在石榴子石残余矿 物.具有弱到中等 δE 负异常(0.98~0.24).Ti 负异 常可能由于地幔残留体中含 Ti 矿物引起的. 87 Rb/ 86 Sr = 1.483 \sim 2.664, 87 Sr/ 86 Sr = 0.717 5 \sim

图 8 三台山超基性岩铅同位素组成图解(中国地质调查局成都地质调查中心,云南1:5万梁河幅、江东幅、帕底幅区域地质调查报告,2011) Fig.8 Pb-isotope compositions of ultra-basic rocks from Santaishan area

0.719 0, (⁸⁷ Sr/⁸⁶ Sr)_i = 0.704 3 ~ 0.711 6, ¹⁴⁷ Sm/¹⁴⁴ Nd = 0.057 6 ~ 0.095 5,¹⁴³ Nd/¹⁴⁴ Nd = 0.051 155 6~0.051 163 9, $\varepsilon_{Nd}(t) = -14.9 \sim -15.0$, 表明 岩 石 起 源 于 富 集 地 幔 源 区.超基性岩 的 ²⁰⁶ Pb/²⁰⁴ Pb = 18.061 ~ 18.840,²⁰⁷ Pb/²⁰⁴ Pb = 15.554~15.605,²⁰⁸ Pb/²⁰⁴ Pb = 37.981~38.092,在 ²⁰⁸ Pb/²⁰⁴ Pb-²⁰⁶ Pb/²⁰⁴ Pb 和 ²⁰⁷ Pb/²⁰⁴ Pb-²⁰⁶ Pb/²⁰⁴ Pb 图解上(图 8),均落在 Th/U=4.0 的北半球参考线 (NHRL)之上,靠近 EM II 地幔,可以认为该套超基 性岩起源于 EM II 地幔,并受到地壳的混染,这与 Sr-Nd 同位素一致.应为大洋岩石圈地幔残片,证明 在早古生代潞西一三台山有洋盆存在.

3 早古生代增生造山作用的构造变形

3.1 早古生代增生地体构造变形的总体面貌

卷入构造混杂岩带的地质体,因能干性不同而 表现为不同的剪切变形特征.能干性最强的白云岩、 硅质岩通常被剪切拉断而形成规模为数百米至数千 米、同方向排列的角砾岩化透镜体或石香肠,透镜体 边缘普遍可见错动或破裂面,内部发育密集的张剪 节理和裂隙,局部可见面理发育于透镜体内部,部分 石香肠的长宽比在10:1以上,并常被牵引成蛇曲 状,显示其遭受强烈剪切或破裂作用;能干性相对强 的花岗岩、火山岩则被改造成片岩或糜棱岩,例如, 寒武纪一奥陶纪花岗岩就是卷入构造混杂岩带内被 改造成的规模最大的构造岩片;能干性相对弱的砂、 泥质岩石被改造成千糜岩、超糜棱岩等,具体的原岩 产状特征现今已无法恢复.

从西向东,以泸水-龙陵-瑞丽断裂为界,西部 变质变形强,东部变质变形弱.西部潞西构造混杂岩 带,内部构造极其复杂,岩石组成单元的原始顺序难 以分辨,从平面上看其是由透入性、大小不等和多级 组合的滑动面所分割,构成宏观填图尺度、露头尺 度、标本尺度及显微尺度不同级次、不同应变结果的 糜棱状"网眼构造";从剖面分析,其应是一个向下收 敛的花状构造.千糜岩、超糜棱岩、变晶糜棱岩等强 应变带的分布与 NNE-NE 向走滑断层延伸一致,但 在龙陵以北强应变带分布在构造混杂岩带中部,而 在龙陵以南则分布在构造混杂岩带西缘泸水一龙 陵一瑞丽断裂上盘,强应变带的这种空间变化可能 与后期的 NNE 向断裂的改造有关,反映早期应力 为 E-W 向挤压.东部为镇安一蚌渺陆缘盆地浊积 岩-岩浆杂岩带,区域构造线主体为早期北西向断 裂和褶皱,其多被晚期北东向和北东东向等断裂组 切割断错,露头尺度的构造形迹反映早期构造活动 以强烈的 E-W 向挤压作用为主,形成近南北向的褶 皱枢纽,其后发生了代表水平运动的韧性剪切右行 走滑作用,而晚期则以垂直运动形成的脆性断裂为 特征.

3.2 早古生代增生地体主要边界断裂

3.2.1 怒江一瑞丽断裂西支(F₁) 断面总体向西、 北西方向陡倾斜(图 2),局部地段向东陡倾.向东逆 冲推覆于古生界蒲满哨群、三叠系扎多组、奥陶纪二 长花岗岩之上.沿断裂带的变形主要表现为强烈的 糜棱岩化,部分地段叠加有脆性变形特征,糜棱面理 向西、北西陡倾,糜棱岩中的碎斑旋转亦主要显示向 东逆冲的运动学特征,发育有不对称倾竖褶皱.

3.2.2 怒江一瑞丽断裂东支(F₂) 断面总体上向 东倾斜(图 2),倾角 50°~70°,局部地段近直立、或 向西倾斜.断裂带的变形主要表现为宽度不一的劈 理化带、构造角砾岩带,以脆一韧性变形为主.沿断

图 9 公养河群向东逆冲推覆于奥陶系老尖山组石英砂岩之上(云南省地质调查院,云南1:25万腾冲县幅、潞西市幅区域地质调查 报告,2008)

Fig.9 Generalized section indicating Gongyanghe Group upthrust over the quartz sandstone of Ordovician Laojianshan Formation Z Ggy.公养河群;O₁lj.老尖山组;S₀.层理;b.劈理;F.断层

裂多处可见保山微地块上的稳定类型沉积物向西逆 冲一推覆于古生界蒲满哨群复理石建造之上.崇 岗一大尖山一带可见蒲满哨群劈理化板岩、钙质一 硅质板岩等向东逆冲一推覆于保山地块上的侏罗系 勐嘎组泥灰岩和二叠系沙子坡组白云岩之上;在桃 子寨以东可见公养河群砂泥质复理石建造以低角度 向东逆冲一推覆于保山地块上的奥陶系老尖山组石 英砂岩之上.

3.2.3 泸水-龙陵断裂(F₃) 断裂呈舒缓波状,总体倾向 W-SW,倾角 67°~76°,其控制了西部构造混杂岩带的东部边界.寒武纪时,该断裂即控制了盆地相深水浊积岩、火山碎屑岩分布区的西部边界,而寒武纪、奥陶纪侵位的花岗岩带则分布在该断裂的东缘,其可能反映了保山地块西缘增生过程中的岛弧岩浆事件,而其后在断裂两侧所形成的地层序列、岩浆岩组合也存在着明显的差异.

断裂上盘为构造混杂岩带宽1~4 km 的构造 混杂岩,混杂岩内部由韧性剪切作用形成的各种构 造形迹十分丰富(图 9)(云南省地质调查院,云南 1 :25 万腾冲县幅、潞西市幅区域地质调查报告, 2008);下盘为潞西地层小区的公养河群一段、奥陶 系大矿山组、泥盆系回贤组及奥陶纪变质变形花岗 岩,其间与主断裂平行的次级断裂及牵引褶曲、揉皱 带、片理化带、糜棱岩化带、矿物拉伸线理,挤压透镜 体、碎裂岩、碎粒岩、断层角砾岩等各种脆一韧性构 造形迹非常丰富,反映了多期次、多种性质的复杂构 造变形特征.沿断裂带糜棱岩中普遍见 S-C 构造、不 对称眼球构造、压力影、旋转的多米诺构造,并有较 多的同构造、或构造活动后期侵位或充填的基性岩 脉、花岗岩脉、伟晶岩脉、细晶岩脉、石英脉等,其中 以顺破碎带侵入的电气石花岗岩脉、伟晶岩脉最具 典型特征.总体形态显示为核部紧闭,西翼宽、东翼 窄的不对称长轴向斜.

总之,卷入构造混杂岩带的地质体,因能干性不同而表现为不同的剪切变形作用结果.能干性最强的白云岩、硅质岩通常被剪切拉断而形成规模为数百米至数公里、同方向排列的角砾岩化透镜体或石香肠,透镜体边缘普遍可见错动或破裂面.构成宏观填图尺度、露头尺度、标本尺度及显微尺度不同级次、不同应变结果的糜棱"网眼构造".区域构造线主体为早古生代北西向断裂和褶皱,以强烈的东西向挤压作用为主,表现为推覆挤压、增生特征.

4 结论

(1)俯冲增生杂岩的物质组成.岩石组合类型为 硅质岩一硅泥质页岩一粉砂岩、杂砂岩、凝灰岩、泥 质板岩,局部有灰岩、扇砾岩及玄武岩、绿片岩、花岗 岩等;基质主体为震旦系一古生界蒲满哨群、公养河 群的浅变质半深水相碎屑岩夹碳酸盐岩及火山岩建 造.沉积环境主要包括弧前陆坡相、浊积扇相、深海 盆地相以及增生过程中的楔顶盆地或残余盆地相. 基质与块体时代从震旦纪至古生代,跨度大,高度混 杂,并有从东向西变新的逐势,表现为后退式增生.

(2)变形样式.表现为晚古生代(早期)同斜倒转 冲断作用的叠瓦构造,早古生代俯冲增生杂岩带卷 入了晚期的构造混杂作用.后期表现为 S-N 向剪切.

(3)火山岩主量元素与微量元素图解判别均显 示玄武安山岩、流纹岩类具弧火山岩特征,而玄武岩 类则为板内火山岩.两种火山岩可能是岛弧与弧后 拉张洋盆产物,或者玄武岩为洋岛(海山)产物.

(4)岩浆弧增生作用.寒武纪、奥陶纪侵位的花 岗岩分为东西2个带,侵入时间西晚东早.它们分别 分布在怒江一瑞丽断裂西支、泸水一龙陵断裂的东 缘,其可能反映了后退式增生过程中岛弧岩浆事件, 也表现出岩浆弧的分带性.可能代表了早古生代保 山地块西缘岩浆弧增生造山作用的一部分.

总之, 泸水 一 潞西增生造山带是指位于腾冲陆 块之东, 增生在保山地块西缘之上, 基底为洋壳或过 渡壳, 主体有强变形的复理石浊积岩系构成的一套 岩石 一构造组合, 并卷入有海山(玄武岩)、增生弧及 洋壳残片. 它记录了洋壳俯冲消亡、增生楔形成过程 的沉积、火山 - 岩浆和构造变形的地质事件群, 也记 录了保山地块西缘早古生代增生造山形成过程的地 质事件. 证明了泸水 - 潞西断裂带现为增生造山带, 在早古生代就发生了增生造山作用, 进一步确认此 带在早古生代存在洋盆.

References

- Cawood, P.A., Kroener, A., Windley, B.F., 2003. Accretionary Orogens: Definition, Character, Significance. EGS-AGU-EUG Joint Assembly, Abstracts from the Meeting Held in Nice, France.
- Chu,Z.Y., Wang, W., Chen, F.K., et al., 2009. Os-Nd-Pb-Sr Isotopic Compositions of the Santaishan Ultramafic Rock in Western Yunnan and Its Geological Significances. Acta Petrologica Sinica, 25(12):3221-3228(in Chinese with English abstract).
- Condie, K. C., 2005. An Overview of Accretionary Orogens. Geological Society of America Abstracts with Programs, 37(7):493.
- Dong, M.L., Dong, G.C., Mo, X.X., et al., 2012. Geochronology and Geochemistry of the Early Palaeozoic Granitoids in Baoshan Block, Western Yunnan and Their Implications. Acta Petrologica Sinica, 28(5): 1453 - 1464 (in Chinese with English abstract).
- Jahn, B.M., 2007. Accretionary Orogens in Japan—What was Accreted in the Accretionary Complexes since the Late Paleozoic. The Third International Workshop and Field Excursion for IGCP-480, Beijing.
- Li,C.N., 1992. Trace Elements Petrology of Igneous Rocks . China University of Geosciences Press, Wuhan (in Chinese).
- Li, J. L., 2004. Basic Characteristics of Accretion-Type Orogens. Geological Bulletin of China, 23: 947 - 951 (in Chinese with English abstract).
- Li, X. Z., Liu, W. J., Wang, Y. Z., et al., 1999. The Tectonic Evolution and Metallogenesis in the Tethys of the Nujiang- Lancangjiang-Jinshajiang Area, Southwestern China. Geological Publishing House, Beijing (in Chinese).
- Liu, B.P., Feng, Q.L., Chonglakmani, C., et al., 2002. Framework of Paleotethyan Archipelago Ocean of Western

Yunnan and Its Elongation towards North and South. Earth Science Frontiers, 9(3): 161 - 171 (in Chinese with English abstract).

- Liu, Q. S., Ye, P. S., Wu, Z. H., 2012. SHRIMP Zircon U-Pb Dating and Petrogeochemistry of Ordovician Granite Bodies in the Southern Segment of Gaoligong Mountain, Western Yunnan Province. *Geological Bulletin of China*, 31(2): 250 - 257 (in Chinese with English abstract).
- Pan,G.T., Chen,Z.L., Li,X.Z., et al., 1997. Geological Structure Formation and Evolution of East Tethys. Geological Publishing House, Beijing (in Chinese).
- Sengör, A. M. C., 2006. Turkic Type Orogeny and a Short History of the Last 600 Million Years. Asia Oceania Geosciences Society, Singapore.
- Sengör, A. M. C., Natal'In, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24 (1):263-337.doi:10.1146/annurev.earth.24.1.263
- Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic College and Paleozoic Crustal Growth in Eurasia. *Nature*, 364: 299 - 307. doi: 10. 1038/364299a0
- Tan, M., Zhan, W.D., 1990. Preliminary Research of Ophiolite Belt in South Langcangjiang Belt, Western Yunnan. Exploration of Geosciences, 3:91-96 (in Chinese with English abstract).
- Windley, B.F., 1992. Proterozoic Collisional and Accretionary Orogens. Developments in Precambrian Geology, 10: 419-446.
- Xiong, C. L., Jia, X. C., Yang, X. J., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Ordovician Mengmao Monzogranite in Longling Area of Western Yunnan Province and Its Tectonic Setting. *Geological Bulletin* of China, 31(2-3):175-286(in Chinese with English abstract).
- Yang, X. J., Jia, X. C., Xiong, C. L., et al., 2012. LA-ICP-MS Zircon U-Pb Age of Metamorphic Basic Volcanic Rock in Gongyanghe Group of Southern Gaoligong Mountain, Western Yunnan Province, and Its Geological Significance. *Geological Bulletin of China*, 31(2):264-276(in Chinese with English abstract).
- Yuan, S.H., Pan, G.T., Wang, L.Q., et al., 2009. Accretionary Orogenesis in the Active Continental Margins. *Earth Science Frontiers*, 16(3):31-48(in Chinese with English abstract).
- Zhang, Q., Zhou, D.J., Zhao, D.S., et al., 1996. Wilson Cycle of the Paleo-Tethyan Orogenic Belt in Western Yun-

nan: Record of Magmatism and Discussion on Mantle Processes. Acta Petrologica Sinica, 12(1): 17 - 28 (in Chinese with English abstract).

Zhong, D.L., 1998. The Paleo-Tethys Orogenic Belt of WesternYunnan and Sichuan. Science Press, Beijing (in Chinese).

附中文参考文献

- 储著银,王伟,陈福坤,等,2009.云南潞西三台山超镁铁岩体 Os-Nd-Pb-Sr 同位素特征及地质意义.岩石学报,25 (12):3221-3228.
- 董美玲,董国臣,莫宣学,等,2012.滇西保山地块早古生代花
 岗岩类的年代学、地球化学及意义.岩石学报,28(5):
 1453-1464.
- 李昌年,1992.火成岩微量元素岩石学.武汉:中国地质大学出版社.
- 李继亮,2004.增生型造山带的基本特征.地质通报,23(9-10):947-951.
- 李兴振,刘文均,王义昭,等,1999.西南三江地区特提斯构造 演化与成矿.北京:地质出版社.
- 刘本培,冯庆来,Chonglakmani,C.,等,2002.滇西古特提斯

多岛洋的结构及其南北延伸.地学前缘,9(3): 161-171.

- 刘琦胜, 叶培盛, 吴中海, 2012. 滇西高黎贡山南段奥陶纪花 岗岩 SHRIMP 锆石 U-Pb 测年和地球化学特征. 地质 通报, 31(2-3): 250-257.
- 潘桂棠,陈智良,李兴振,等,1997.东特提斯地质构造形成演化.北京:地质出版社.
- 谭敏, 詹五第, 1990. 云南怒江带三台山蛇绿岩带的初证. 地学 探索, 3:91-96.
- 熊昌利,贾小川,杨学俊,等,2012.滇西龙陵地区勐冒奥陶纪 二长花岗岩 LA-ICP-MS 锆石 U-Pb 定年及其构造环 境.地质通报,31(2-3):175-286.
- 杨学俊,贾小川,熊昌利,等,2012.滇西高黎贡山南段公养河 群变质基性火山岩 LA-ICP-MS 锆石 U-Pb 年龄及其地 质意义.地质通报,31(2-3):264-276.
- 袁四化,潘桂棠,王立全,等,2009.大陆边缘增生造山作用.地 学前缘,16(3):31-48.
- 张旗,周德进,赵大升,等,1996.滇西古特提斯造山带的威尔 逊旋回:岩浆活动记录和深部过程讨论.岩石学报,12 (1):17-28.
- 钟大赉,1998.滇川西部古特提斯构造带.北京:科学出版社.

《Journal of Earth Science》(英文版)影响因子升至 0.546

根据美国 2014 年 7 月 29 日发布的 JCR (期刊引证报告)最新数据,我校主办的英文期刊 《Journal of Earth Science》(简称 JES)影响因子升至 0.546.自该刊被 SCI 收录以来,影响因子逐年提升,由 2011 年的 0.312 到 2012 年的 0.395,再到 2013 年的 0.546.

影响因子是衡量期刊国际影响力的重要指标,近年来为了提升期刊的影响力,JES 主编、编委专家和编辑部成员采取了一系列措施:组建国际化的编委会,国际编委达到 32%,国际审稿专家有 300 多人;采用"学术与出版分离"的办刊理念,邀请编委和专家组织稿件,充分发挥专家学者在办刊中的核心作用,严格审稿; 聘请国际知名学者 Prof.Timothy M.Kusky 和 Prof.Robert E. Criss 担任副主编,把好选题和稿件质量关;聘请英国地质学家 Prof.Roger Mason 对文章进行语言润色;同时与国际著名的出版公司 Springer 合作海外发行电子版,这些都对提升期刊在国际上的影响起到重要作用.

该刊 2012 年首批入选"教育部高校科技期刊精品工程"和"湖北省优秀精品期刊";2013 年荣获"中国国际影响力优秀学术期刊".