doi:10.3799/dqkx.2015.005

青海治多地区晚三叠世石英闪长岩 地球化学特征及成岩动力学背景

赵少卿1,付乐兵1*,魏俊浩1,谭 俊1,王旭春2,赵志新1,李 翔1

1.中国地质大学资源学院,湖北武汉 430074
 2.青海有色地质矿产勘查院,青海西宁 810007

摘要:对差塘地块东北缘甘孜一理塘缝合带南侧日啊日曲石英闪长岩进行了系统的锆石 U-Pb 年龄、主量一微量元素及 Sr-Nd 同位素分析,以探讨其岩石成因及地球动力学意义.LA-ICP-MS 锆石 U-Pb 定年结果表明,石英闪长岩侵位年龄为 218± 1 Ma,为晚三叠世岩浆活动的产物.岩石 SiO₂ 含量介于 53.02%~62.06%之间,富 Al₂O₃(15.84%~17.00%)和 CaO(6.71%~ 8.94%),贫 TiO₂(0.49%~1.01%)和 P₂O₅(0.04%~0.12%),具有较高的 MgO(3.31%~5.66%)和 Mg[#](50~62),属准铝质 钙碱性系列;岩体稀土元素总量较低(38.05×10⁻⁶~61.58×10⁻⁶),轻重稀土分馏不明显,LILE 富集,HFSE 亏损,具有含量较高的 Cr(33.45×10⁻⁶~176.64×10⁻⁶)和 Ni(13.34×10⁻⁶~43.62×10⁻⁶).全岩(⁸⁷ Sr)⁵ 比值较为一致(0.706 8~0.707 9), $\epsilon_{Nd}(t)$ 变化于-5.5~-1.6.主微量元素及同位素结果表明日啊日曲石英闪长岩具有高镁闪长岩的特征,与赞岐岩地球化学特 征类似,为俯冲沉积物来源的熔体交代岩石圈地幔形成的尖晶石相金云母二辉橄榄岩低度(10%~15%)部分熔融的产物,岩 浆演化过程中经历了辉石、角闪石等矿物的分离结晶.微量元素构造判别图解表明岩石为俯冲环境下的弧岩浆岩,结合区内蛇 绿岩、研究区南部陆缘弧火山岩和义敦岛弧埃达克岩的发现,认为古特提斯洋在晚三叠世时期可能仍处于消减状态,日啊日 曲高镁石英闪长岩形成于甘孜一理塘洋南西向俯冲过程中.

关键词:高镁闪长岩;赞岐岩;甘孜一理塘缝合带;古特提斯洋;羌塘地块;青藏高原;地球化学.
 中图分类号: P597 文章编号: 1000-2383(2015)01-0061-16 收稿日期: 2014-05-01

Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province

Zhao Shaoqing¹, Fu Lebing^{1*}, Wei Junhao¹, Tan Jun¹, Wang Xuchun², Zhao Zhixin¹, Li Xiang¹

1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China 2. Qinghai Institute of Geology and Mineral Resources, Xining 810007

Abstract: Zircon U-Pb age, major and trace elements and Sr, Nd isotope compositions of the Riariqu quartz diorites from the south of the Ganzi-Litang suture zone, northeastern Qiangtang terrane are studied to decipher its petrogenesis and geodynamic significance. LA-ICP-MS zircon U-Pb dating yields an emplacement age of 218 ± 1 Ma for the intrusion. Bulk-rock analyses show that these rocks belong to the calc-alkaline series, with SiO₂ contents ranging from 53.02% to 62.06%. They are enriched in Al₂O₃(15.84\%-17.00\%) and CaO (6.71%-8.94%), depleted in TiO₂(0.49%-1.01%) and P₂O₅(0.04%-0.12%), defining their metaluminous characteristics. All samples have high concentrations of MgO (3.31%-5.66%), Cr ($33.45\times10^{-6}-176.64\times10^{-6}$) and Ni ($13.34\times10^{-6}-43.62\times10^{-6}$), and resultant high Mg[#] (50-62). These rocks are enriched in LREE and LILE, and depleted in HFSE with low REE contents ($38.05\times10^{-6}-61.58\times10^{-6}$). The (87 Sr/ 86 Sr)₁ ratios range from 0.706 8

基金项目:国家自然科学基金(Nos.41302065,41102047);中国地质大学(武汉)中央高校基本科研业务费专项资金(Nos.CUG120702, CUG120842);中国博士后科学基金(No.2012M521493).

作者简介:赵少卿(1985-),男,博士研究生,主要从事矿床地球化学、成矿规律与成矿预测研究.E-mail: zhaoshaoqing7@163.com * 通讯作者:付乐兵,E-mail: fulebing1212@126.com

to 0.707 9, and $\varepsilon_{Nd}(t)$ values vary from -5.5 to -1.6. The geochemical and Sr-Nd isotopic compositions of the Riariqu quartz diorites are similar to those of high-Mg dioritoids/sanukitoids. We contend that the Riariqu quartz diorites were derived from low-degree partial melting (10% - 15%) of a phlogopite-bearing spinel lherzolite mantle, which was metasomatized by sediment-derived melts. Fractional crystallization of pyroxene and amphibole might also occur during the magma evolution. The geochemical characteristics indicate that the Riariqu quartz diorites are arc-related magmatic rocks, and were generated in a subduction-related tectonic setting. Combined with the ophiolites and continental marginal arc lavas in the study area, and the regional adakites in the Yidun terrane, it is suggested that the Riariqu quartz diorites might be generated during the southwestward subduction of Ganzi-Litang Paleo-Tethys Ocean in the Late Triassic.

Key words: high-Mg diorite; Sanukitoid; Ganzi-Litang suture belt; Paleo-Tethys ocean; Qiangtang terrane; Qinghai-Tibet plateau; geochemistry.

青藏高原的古特提斯构造域具有"多洋盆、多地 体、多岛弧、多俯冲、多碰撞"的特征(Pan et al., 2012; 许志琴等,2013),内部的条带状地块及地块之间的缝 合带(蛇绿混杂岩带)记录了大量古一新特提斯演化 的关键地质信息.高原中部的金沙江缝合带和甘孜-理塘缝合带在羌塘地块东北缘的治多地区合并(图 1a),是古特提斯之金沙江洋和甘孜一理塘洋存在的 直接证据.近年来的研究工作表明,在羌塘地块西部 的双湖、沱沱河及义敦岛弧东缘的中甸一昌台地区存 在大量晚三叠世岩浆活动(图 1a; Wang et al., 2008, 2011a, 2013; Fu et al., 2010; Chen et al., 2013; Zhai et al., 2013; Peng et al., 2014). 这类岩石呈现富 Nb 玄 武岩一高镁安山岩一埃达克岩所独有的地球化学特 征,可能为俯冲环境下受熔体/流体交代改造地幔楔 的部分熔融产物(Wang et al., 2008, 2011a, 2013; Zhai et al., 2013).但截止目前,甘孜一理塘缝合带北西段 和金沙江缝合带的结合部位(青海省治多地区)仍未 见相关研究成果报道,这在一定程度上限制了人们对 甘孜-理塘洋北段演化历史的认识.

高镁安山岩/闪长岩类(HMA)不仅能反演俯 冲环境下岩石圈地幔的演化过程(Kamei *et al.*, 2004;邓晋福等,2010),其本身也与Cu、Ni、Au等金 属矿产的形成密切相关(毛景文等,2006;王强等, 2006),在近年来已成为地学界研究热点.HMA 泛 指 MgO(Mg[#])含量较高的安山岩和闪长岩类,以 SiO₂>52%、高 Mg(MgO>5%,Mg[#] \geq 55)、Cr、Ni 和低 FeO^T/MgO(<1.5)为特征(Tatsumi and Ishizaka,1981,1982;Tatsumi,2001;赵振华等,2007), 经历分异演化过程的 HMA 中 MgO 含量可低至 2%~3%,Cr、Ni 含量也相应降低,但 Mg[#] 含量依 然较高(通常大于 45)(Kelemen,1995;Polat and Kerrich,2001;尹继元等,2012).由于该类岩石主要 形成于俯冲带岛弧环境,研究其成因机制对揭示洋 壳消减过程提供了证据. 因此,本文选择出露于甘孜一理塘缝合带北西段 治多地区的日啊日曲高镁闪长岩开展锆石 LA-ICP-MS U-Pb 年代学分析,并进行系统的主微量元素和 Sr-Nd 同位素地球化学研究工作,以探讨岩体侵位时 代、成因及其形成的地球动力学背景,为古特提斯洋 在羌塘地块东北缘的动力学演化过程提供科学依据.

1 地质背景及岩石学特征

青藏高原由 4 个主要的"地块"拼贴而成,从南 到北依次为喜马拉雅、拉萨、羌塘和松潘一甘孜(图 1a),这些地块分别被雅鲁藏布江、班公湖一怒江和 金沙江等缝合带分割开来(Yin and Harrison,2000; Chung et al.,2005; Zhu et al.,2013; Zhang et al., 2014).其中,羌塘地块又被龙木错一双湖缝合带分 割成南羌塘和北羌塘(Kapp et al.,2003; Zhai et al.,2011),研究区位于北羌塘地块东北缘金沙江 缝合带与甘孜一理塘缝合带的结合部位,属甘孜一 理塘缝合带北西段(图 1a).该缝合带北起青海治多 地区,向南东经甘孜、理塘再延入云南省境内,全长 约 800 km,总体呈 NNW 向展布.

研究区内出露的地层主要为石炭-早中二叠世 多彩蛇绿混杂岩和三叠纪查涌蛇绿混杂岩、中三 叠一晚三叠世巴颜喀拉山群砂岩组、晚三叠世巴塘 群火山岩一碎屑岩一碳酸盐岩系列(中酸性火山碎 屑岩、火山熔岩、长石岩屑砂岩、灰岩等)以及新近 系一第四系松散沉积物.其中,多彩和查涌蛇绿混杂 岩分别是金沙江缝合带和甘孜-理塘缝合带的主要 组成部分,多彩蛇绿岩主要由异剥橄榄岩、辉石岩、 辉长岩、玄武岩、辉绿岩和硅质岩组成;查涌蛇绿岩 主要由橄榄辉石岩、辉长岩、枕状玄武岩、辉绿岩墙 和硅质岩组成.巴塘群火山岩组内的英安质凝灰岩 则是尕龙格玛铜多金属矿床的直接围岩(图1b).区

图 1 月厥间原码更花廓及二重纪石水石的主力和(a)和尤指地域小北球相多地区地质的图(b)

Fig.1 Simplified tectonic map of the Tibetan plateau showing the temporal-spatial distribution of Triassic arc magmatic rocks (a) and regional geological map of the Zhiduo area (b)

1.新近纪一第四纪沉积物;2.晚三叠世巴塘群碳酸盐岩组;3.晚三叠世巴塘群火山岩组;4.晚三叠世巴塘群碎屑岩组;5.中三叠一晚三叠世巴颜 喀拉山群砂岩组;6.三叠纪查涌蛇绿混杂岩带;7.石炭一早中二叠世多彩蛇绿混杂岩带;8.晚三叠世中酸性侵入岩体;9.断层;10.采样位置;a 图据 Yin and Harrison,2000;Chung *et al.*,2005 修改

图 2 治多地区日啊日曲石英闪长岩显微照片(正交偏光) Fig.2 Microphotographs of the Riariqu quartz diorite from Zhiduo area Pl.斜长石;Amp.角闪石;Bi.黑云母;Q.石英

内 NW 向脆性逆冲断裂构造发育,岩浆活动强烈.

日啊日曲石英闪长岩侵入体位于青海省治多县 尕龙格玛铜矿区北部,出露面积约 60 km²,受 NW-SE 向区域断裂控制,呈长条带状分布在查涌蛇绿混 杂岩带南侧,紧邻多彩蛇绿混杂岩带展布(图 1b). 石英闪长岩发育透入性片麻理,遭受了微弱的脆韧 性构造变形.5件样品采自地表的新鲜露头,目在岩 体中央相至边缘相均匀分布(图 1b).岩石呈半自形 粒状结构、块状构造,主要由斜长石、角闪石、黑云母 及少量石英和钾长石构成.斜长石为自形一半自形 板状,粒径 0.5~2.0 mm 不等,多为中长石,常见聚 片双晶结构(图 2a,2b),偶见不规则环带结构,环带 局部边缘被熔蚀,含量 35%~45%;角闪石呈半自 形粒状(图 2a),具弱的绿泥石化蚀变,粒径 0.2~ 1.0 mm,含量 15%~30%;黑云母多为板片状(图 2b),解理纹细而平直,含量5%~15%;石英自形程 度较差,粒径 0.1~0.5 mm,含量约 5%;钾长石呈他 形粒状,主要为正长石,并见微斜长石,含量约5%; 另有少量磷灰石、锆石、磁铁矿等副矿物.

2 测试方法

2.1 锆石 LA-ICP-MS U-Pb 定年

样品(GS2)的破碎和挑选由河北省廊坊市区域 地质矿产调查研究所实验室完成,并利用重磁技术 对锆石进行分选.锆石制靶后,磨蚀至锆石核部出 露,进行阴极发光(CL)显微照像,结合反射光和透 射光,观察锆石的内部结构.锆石原位微区测试在中 国地质大学(武汉)地质过程与矿产资源国家重点实 验室(GPMR)激光剥蚀等离子体质谱仪(LA-ICP-MS)上完成,激光束斑直径 32 μm,实验中采用 He 作为剥蚀物质的载气.锆石 U-Th-Pb 同位素组成分 析以锆石 91500 作为外标进行同位素分馏校正;微 量元素含量则利用 NIST610 作为外标,²⁹ Si 作为内 标的方法进行定量计算,详细分析流程和仪器参数 参见 Liu *et al*.(2008a,2010).数据处理采用 ICPMSDataCal程序完成,并使用 ComPbCorr # 3_ 151 进行普通 Pb 校正(Andersen,2002).U-Pb 年龄 谐和图绘制和年龄权重平均值计算均采用 Isoplot/ Ex_ver3 (Ludwig,2003)完成.

2.2 全岩地球化学测试

首先在室内对岩石样品进行详细的岩相学鉴 定,挑选出新鲜无蚀变的样品,清除其表面的粉尘, 粉碎至 200 目以下,然后进行主量、微量元素、Sr-Nd 同位素测试.

主量元素测试在澳实矿物实验室集团澳实分析 检测(广州)有限公司完成,采用 ME-XPF06 方法分 析完成,分析流程为:准确称取 0.9g样品,煅烧后加 入 9.0g的 Li₂B₄O₇-LiBO₂ 助熔物(固体),充分混 合后,放置在自动熔炼仪中,使之在 1050~1100 ℃ 熔融,熔融物倒出后形成扁平玻璃片,再用 XRF 荧 光光谱仪分析,分析精度优于 5%.

微量元素和稀土元素在 GPMR 采用美国 Agilent 公司生产的 Agilent 7500a 等离子体质谱仪 (ICP-MS)测定,分析流程为:准确称取粉末样品 50 mg置于 Teflon 坩埚中,用 1.5 mL HNO₃ 和 1.5 mL HF 在 195 ℃条件下消解 48 h.将其蒸干后, 加入 3 mL HNO₃ 置于烘箱中于 195 ℃加热 12 h.将 溶液转入聚乙烯料瓶中,并用 2% HNO₃ 稀释至约 100 g 后,密闭保存以备 ICP-MS 测试.4 种国际标准 样(AGV-2、BHVO-2、BCR-2 和 RGM-1)用于监控 样品分析的精密度和准确度,除 Zr 为 14%外,其余 元素分析精度优于 5%(罗文行等,2013;易立文等, 2014).详细的样品分析处理过程、分析精密度和准确度同文献 Liu *et al*.(2008b).

全岩 Sr、Nd 同位素测试在 GPMR 利用 Triton-TI 型热电离同位素质谱仪(TIMS)完成.分析流程 如下:将粉末样品置于 Teflon 坩埚中,用 1.5 mL HNO₃ 和 1.5 mL HF 在 195 ℃条件下消解 48 h,将 其蒸干后再加入约 1 mL HCl.最后用 AG50X8 阳离 子交换树脂分离 Rb 和 Sr,再用 HDEHP 萃淋树脂 分离 Sm 和 Nd.测得的⁸⁷ Sr/⁸⁶ Sr 和¹⁴³ Nd/¹⁴⁴ Nd 比值 分别用⁸⁶ Sr/⁸⁸ Sr=0.119 4 和¹⁴⁶ Nd/¹⁴⁴ Nd=0.721 9 标准化.本次分析过程中,Sr 同位素标样 NBS987 的 测试结果为 0.710 271±8(2 σ),Nd 同位素标样 JNdi-1 的测试结果为 0.512 115±6(2 σ).详细的测试流 程和分析方法见文献 Gao *et al.*(2004).

3 分析结果

3.1 锆石 U-Pb 年代学

石英闪长岩(GS2)锆石 CL、U-Pb 同位素年龄 及微量元素测试结果列于表 1、表 2 和图 3.锆石为 无色一淡黄色透明状,呈自形一半自形长柱状,长度 80~250 µm,长宽比多介于 2:1~3:1,发育明显 的振荡环带(图 3a).对该样品中 19 颗锆石的 19 个 点进行了测定(表 1),所测锆石 U 和 Th 含量分别 为 $389 \times 10^{-6} \sim 1$ 315×10^{-6} 和 $271 \times 10^{-6} \sim 1$ $673 \times 10^{-6} \sim 1$ 10⁻⁶, Th/U比值为 0.66~1.30, 一致于岩浆成因锆 石的 Th/U 比值(>0.1, Griffin et al., 2004). 锆石 稀土元素特征方面,轻、重稀土分馏明显,表现为重 稀土元素富集、轻稀土元素亏损,具较强烈的正 Ce 异常及弱负 Eu 异常(图 3c),表明所分析的锆石为 典型的岩浆成因锆石(Hoskin and Schaltegger, 2003). 所有数据点都位于谐和线上或附近(图 3a),²⁰⁶ Pb/²³⁸ U 年龄变化于 215±2~220±2 Ma 之 间,加权平均年龄为 218±1 Ma(MSWD=0.6),该 年龄代表了石英闪长岩体的侵位年龄.剩余两颗锆 石 GS2-11 和 GS2-14 的²⁰⁶ Pb/²³⁸ U 年龄分别为 238±2 Ma 和 235±2 Ma,可能为捕获锆石.

3.2 元素地球化学

本文对治多地区 5 件石英闪长岩样品进行了元 素地球化学分析,全岩主量和微量元素测试结果及 特征值列于表 3.岩石 SiO₂ 含量介于 53.02% ~ 62.06%之间, $K_2O + Na_2O$ 为 3.28% ~ 3.86%, K_2O/Na_2O 比值介于 0.31~0.50 之间,指示岩石属 中钾钙碱性闪长岩(图 4a, 4b).岩体富 Al₂O₃ (15.84%~17.00%)、CaO(6.71%~8.94%),贫 TiO₂(0.49%~1.01%)和 P₂O₅(0.04%~0.12%), A/CNK 比值为 0.78~0.88,属准铝质岩石(图 4c). Harker 图 解显示,随 SiO₂ 含量的增加,MgO、 Al₂O₃、TiO₂、Fe₂O₃^T及 CaO 等氧化物含量呈线性 降低(图略),表明有角闪石、辉石等矿物的分离结 晶.石英闪长岩具高 MgO(3.31%~5.66%)、 Fe₂O₃^T(6.30%~7.13%)的特征,Mg[#]介于 50~62 之间,在划分高镁闪长岩与正常闪长岩的 MgO-SiO₂关系图解中(图 4d),样品大都落在高镁闪长岩 范围内,具有与日本 Setouchi 火山岩带中的赞岐岩 相似的主量元素地球化学特征.

岩体稀土元素含量较低,REE 总量为 $38.05 \times 10^{-6} \sim 61.58 \times 10^{-6}$,标准化稀土元素球粒陨石配分 形式呈略微的右倾形式(图 5a),但(La/Yb)_N 较为 一致($2.63 \sim 4.76$),表明轻重稀土元素分馏不明显. Eu/Eu*介于 $0.71 \sim 1.15$,表现为弱的负 Eu 或正 Eu 异常.微量元素方面,石英闪长岩富集大离子亲石元 素(LILE,如 Rb、Sr、La、K),亏损高场强元素 (HFSE,如 Nb、Ta、Zr、Hf),相容元素 Cr($33.45 \times 10^{-6} \sim 176.64 \times 10^{-6}$)和 Ni($13.34 \times 10^{-6} \sim 43.62 \times 10^{-6}$)含量较高,在原始地幔标准化蛛网图上,表现 出明显的 Rb、Sr 和 K 正异常,Ba、Nb、Ta、P 和 Ti 负异常(图 5b),与赞岐岩类的微量元素组成一致.

3.3 Sr-Nd 同位素

日啊日曲石英闪长岩全岩 Sr-Nd 同位素测试 结果列于表 4.样品⁸⁷ Sr/⁸⁶ Sr 比值介于 0.708 445~ 0.710 082, (⁸⁷ Sr/⁸⁶ Sr)_i 比值变化于 0.706 8~ 0.707 9,¹⁴³ Nd/¹⁴⁴ Nd 比值为 0.512 290~0.512 469, $\varepsilon_{Nd}(t)$ 变化于-5.5~-1.6,对应的两阶段 Nd 模式 年龄 T_{DM2} 为 1.1~1.4 Ga.

4 讨论

4.1 岩石成因

日啊日曲石英闪长岩主量元素显示其为中钾钙 碱性准铝质岩石,具有高 MgO 含量和 Mg^{*}的特征 (图 4).岩石富集 Rb、Sr、K 等大离子亲石元素,亏损 Nb、Ta、P、Ti 等高场强元素,具有浅的 Nb-Ta 槽 (图 5b),显示出典型俯冲带岩浆岩的地球化学特征 (Kelemen *et al.*,2003),表明其形成与板块俯冲作 用密切相关.与典型岛弧环境下钙碱性安山岩/闪长 岩类相比,日啊日曲石英闪长岩具有更高的 Mg^{*} (50~62)及MgO(3.31%~5.66%)、Cr(33.45×

结果
的机
ぼ年、
-Pb
-NSI
A-ICP-
普石 L
GS2)∯
木池
英区
田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田
E E
斑 区
治後
表1

area
Zhiduo
from
(GS2)
sample
diorite
quartz
Siariqu
the I
results of
dating
J-Pb
rcon [
MS zi
LA-ICP-I
Table 1

测试	Pb	Th	D	TL /II				U-Th-	Pb同位	素比值						年	:龄(Ma)			
点号	(10^{-6})	(10^{-6})	(10^{-6})	111/ 0	$^{207}{ m Pb}/^{206}{ m Pb}$	1σ	$^{207}{ m Pb}/^{231}$	5 U 12	τ 206	$Pb/^{238}U$	1σ	$^{208}\mathrm{Pb}/^{232}\mathrm{Th}$	$1 1\sigma$	$^{207}\mathrm{Pb}/^{20t}$	⁵ Pb 1 _c	$\sigma ~^{207}{ m Pb},$	/ ²³⁵ U 1	$1\sigma^{20}$	$p_{b/^{238}U}$	1σ
GS2-1	281	906	850	1.07	0.050 1	0.0013	0.235	1 0.00	63 (0.034 0	0.0004	0.0108	0.000 3	198	5	9 21	14	5 L	216	2
GS2-2	267	821	843	0.97	0.0514	0.0013	0.242 {	5 0.00	61 (D.034 1	0.000 3	0.0107	0.000 2	257	22	9 22	20	сı	216	2
GS2-3	199	622	894	0.70	0.0524	0.0013	0.246	5 0.00	61 (0.033 9	0.000 3	0.0103	0.0002	302	4(9 22	24	5	215	2
GS2-4	289	873	868	1.01	0.050 9	0.0013	0.242 (0.00	61 (0.0344	0.000 3	0.0109	0.000 2	235	9 [×]	4 22	20	2	218	2
GS2-5	202	631	711	0.89	0.050 6	0.0015	0.240 (5 0 . 00	73 (0.0345	0.0004	0.0107	0.000 3	233	7(0 21	19	9	219	2
GS2-6	203	630	764	0.82	0.050 3	0.0013	0.239 (6 0 . 0C	62 (0.0344	0.0004	0.010 5	0.000 3	209	6	2 21	18	2	218	2
GS2-7	253	780	1 096	0.71	0.0508	0.0013	0.242	7 0.00	64 (0.034 6	0.0004	0.0108	0.000 4	232	ę	4 22	21	5	219	2
GS2-8	442	1378	$1 \ 315$	1.05	0.0510	0.001 1	0.244 :	3 0.00	N4 7 (0.0347	0.000 3	0.010 0	0.0004	243	4	8	22	4	220	2
GS2-9	147	419	638	0.66	0.050 6	0.0013	0.241 {	8 0.00	64 (0.034 6	0.000 4	0.0109	0.000 7	233	.9	1 22	20	2	219	2
GS2-10	66	295	442	0.67	0.050 2	0.0016	0.240	1 0.00	7.8 (0.034 8	0.000 4	0.010 0	0.000 7	211	7(6 21	18	9	220	ŝ
GS2-11	255	721	1 036	0.70	0.0490	0.0012	0.255 {	9 0.00)66 (0.0377	0.0004	0.0112	0.000 8	146	.9	2 23	31	10	238	2
GS2-12	117	357	435	0.82	0.0508	0.0026	0.234 {	8 0.01	0 6 (0.0339	0.0004	0.009 8	0.000 6	232	11	2 21	14	6	215	3
GS2-13	285	890	872	1.02	0.0513	0.0013	0.247 2	2 0.00	6.5 (0.034 8	0.000 3	0.010 0	0.000 5	257	ę	4 22	24	2	220	2
GS2-14	178	509	614	0.83	0.0504	0.001 5	0.259 ;	3 0.00	81 (0.0372	0.0004	0.0124	0.000 7	213	7.	2 23	34	7	235	3 C
GS2-15	514	1673	1 287	1.30	0.049 5	0.0016	0.233	7 0.00	59 (0.0343	0.0004	0.0102	0.000 3	172	00	1 21	13	5 L	217	2
GS2-16	196	621	709	0.88	0.0497	0.0016	0.237	1 0.00	77 (0.0344	0.0004	0.0104	0.000 3	189	7(6 21	16	9	218	2
GS2-17	126	384	512	0.75	0.050 3	0.0014	0.239 {	9 0.00	6.5 (0.034 6	0.000 3	0.0106	0.000 3	209	9	5 21	18	2	219	2
GS2-18	179	572	601	0.95	0.050 9	0.001 5	0.243	7 0.00) 6 9	0.034 6	0.000 3	0.0104	0.000 3	235	9	22	21	9	219	2
GS2-19	87	271	389	0.70	0.050.6	0.001.5	0.244 ?	2 0.00	7.5 (0.034.8	0.0004	0.010.5	0.000.3	233	7:	22	22	9	220	2
					#	。 次 分	en e		せた	声(CS2)緯	「「「」」である。	日本公式	重(10-6)							
				Τ	able 2 Zirc	con trace	element c	lata of th	he Riari	iqu quartz	diorite	sample (GS	32) from 2	Zhiduo a	rea					
测试点	中	La (Ce P	r Nd	l Sm	Eu	Gd	Tb	Dy	Но	Er	Tm Y	7b Lu	Eu/E	u* F	H T	a J	Y	Ti	۱b
GS2-j		.03 20	0.0	50 7.8	7 13.40	4.57	70.40	22.60	298	116.00	583	140.00 $1\frac{4}{4}$	197 295	3 0.3	7 12	365 0.8	80 37	746	5.48 2	50
$GS2^{-2}$	0	.10 22	2.60 0.(64 10.3	0 14.80	5.01	68.90	21.10	283	111.00	569	143.00 16	502 334	1 0.4(0 11 C	841 0.8	84 36	366	6.67 2	50
GS2-{	~	.00 15	5.60 0.0	07 1.5	0 4.11	1.35	28.10	10.80	165	73.40	396	95.90 10)32 215	5 0.23	8 11	888 0.	76 23	376	5.28 1	70
$GS2^{-4}$	i C	.04 21	1.70 0.3	57 8.3	7 14.80	4.94	70.10	22.40	290	111.00	545	130.00 15	369 27(0.3	9 12	369 0.'	73 35	568	7.67 2	08
GS2-E	0	.03 17	7.00 0.:	54 6.4	6 11.70	3.90	52.80	17.50	228	89.60	449	111.00 15	204 247	7 0.4(0 11 C	732 0.4	69 29	910	6.74 1	.85
GS2-(0	.05 18	3.10 0. ⁴	42 5.6	9 10.40	3.52	49.80	17.20	240	97.20	520	130.00 14	460 305	0.3	9 10	940 0.'	77 32	234	6.94 2	32
GS2-7)	.07 2(0.10 0.0	31 5.4	1 9.58	2.72	53.30	18.10	253	107.00	565	138.00 15	511 32(0.2	9 10	586 1.0	02 34	470	6.50 2	18
GS2-{	~	.09 3]	1.40 0.8	84 12.8	0 21.40	6.90	100.00	32.20	423	165.00	822	200.00 2 2	218 447	7 0.3	8 12	901 1.	15 47	290	5.68 3	20
GS2-((2.21 15	5.80 0	58 4.5	8 5.90	2.03	31.40	11.20	158	67.80	368	95.10 11	113 234	1 0.3	7 12	987 0.4	69 19	989	6.22 1	38
GS2-1	0	.04 5	9.71 0.	16 2.8	0 3.89	1.49	25.00	8.60	126	55.10	303	3 06.97	917 196	. 0.3.	5 11	190 0.	47 18	813	5.75 1	32
GS2-1	1	.02 2]	1.20 0.1	09 1.3	0 3.13	1.25	29.80	12.30	192	83.40	439	105.00 11	111 222	2 0.2	6 13	350 1.:	31 26	360	8.02 3	.27
GS2-1	2 (.03 1().30 0.1	23 3.7.	9 6.66	2.06	34.60	11.60	159	64.50	338	85.30 5	965 199) 0.3 [,]	4 11	889 0.	49 2 0	96C	4.47 1	.27
GS2-1	3 (.01 2]	1.90 0. [,]	47 7.9.	3 11.80	4.25	65.20	21.10	287	112.00	566	137.00 14	184 295	3 0.3	7 12	008 0.'	75 35	580	6.53 2	11
GS2-1	4 C	.01 15	3.60 0.	34 4.8	8 9.21	3.27	46.60	15.60	205	81.20	418	102.00 11	[43 23]	1 0.3	9 12	122 0.'	74 26	548	4.13 1	.57
GS2-1	5).18 44	4.20 1. ⁴	44 20.5	0 32.10	9.52	145.00	45.50	578	216.00	1015	235.00 24	111 460	0.3	5 11	626 1.(04 67	705	9.44 4	26
GS2-1	9	.06 17	7.20 0.	38 5.6	4 11.30	3.59	57.70	18.80	255	102.00	526	129.00 14	121 288	3 0.3	5 11	806 0.'	72 33	316	8.72 1	95
GS2-1	2	0.04 1(0.70	29 3.6	9 5.86	2.37	31.80	10.60	146	59.80	313	77.10 8	359 178	3 0.4	2 12	288 0.	56 19	948	5.35 1	16
GSZ-1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.04 It	5.20 0.	35 6. L	8 10.50	3.44	53.20	17.30	231	90.00	450	110.00 12	203 24	0.3	9	473 0.0	61 28	874	6.12 1	61
GS2-1) 6	.02 8	3.59 0.1	21 4.1.	3 6.64	2.11	31.30	10.10	135	53.90	279	69.50 %	776 161	0.3	7 11	981 0.:	38 17	763	4.68 0	80

图 3 治多地区日啊日曲石英闪长岩(GS2)中锆石阴极发光(CL)图像(a)、U-Pb年龄谐和图(b)和球粒陨石标准化稀土配分 图(c)

Fig.3 Cathodoluminescence (CL) images (a), U-Pb concordia diagram (b) and Chondrite-normalized REE patterns (c) for zircons of Riariqu quartz diorite sample (GS2) from Zhiduo area

图 a 中圆圈代表 U-Pb 年龄测试激光剥蚀点位;圈中数字为分析点号,编号同表 1,圈外年龄为206 Pb/238 U 表面年龄

 $10^{-6} \sim 176.64 \times 10^{-6}$)和 Ni(13.34×10⁻⁶~43.62× 10⁻⁶)含量,与 HMA 的特征类似(Tatsumi and Ishizaka, 1981, 1982; Kelemen, 1995; Shimoda et al., 1998; 尹继元等,2012),更接近于日本 Setouchi 火山岩带中 的赞岐岩类(Shirey and Hanson, 1984;张旗等, 2004, 2005).这类富镁闪长质岩浆有如下几种成因模式:(1) 拆沉下地壳熔融的熔体与地幔橄榄岩反应形成 (Smithies and Champion, 1999, 2000; Gao et al., 2004);(2)俯冲洋壳部分熔融形成的熔体与地幔楔反 应形成(Rapp et al., 1999; Smithies et al., 2007); (3) 俯冲洋壳(+沉积物)脱水释放的流体促使地幔部分 熔融而形成原始岩浆(Crawford et al., 1989; Tatsumi, 1995);(4)俯冲沉积物部分熔融形成的富 Si 质熔体与 地幔橄榄岩反应(Yogodzinski et al., 1994; Shimoda et al., 1998; Tatsumi, 2001; Tatsumi and Hanyu, 2003; Wang et al., 2008, 2011b).

Gao et al.(2004)认为由地壳拆沉作用导致下 地壳熔融产生的熔体通常具有高 Sr 含量、低 Y 和 Yb含量、高Sr/Y比值等特征,其源区贫水且石榴 石为残留相;由俯冲洋壳熔体与地幔橄榄岩反应产 生的岩浆同样具有高 Sr 含量、低 Y 和 Yb 含量、高 Sr/Y 比值等特征,石榴石可能为残留相,但其源区 富水,且轻、重稀土强烈分馏,亏损 HREE, 无 Eu 异 常(Kelemen,1995).而日啊日曲石英闪长岩为钙碱 性岩石,具有较低的 Sr(157.0×10⁻⁶~197.0× 10^{-6})、Sr/Y(6.8~15.2)和 La/Yb(3.7~6.6)比值, 轻、重稀土元素分馏不强烈,LREE 略富集,HREE 平坦分布的特征(图 5a),表明日啊日曲石英闪长岩 不可能由拆沉下地壳熔融或俯冲洋壳来源的熔体与 地幔橄榄岩反应形成.对于俯冲洋壳(+沉积物)发 生脱水释放流体促使地幔熔融的模式而言,因为板 片脱水是在没有达到石榴子石稳定的条件下进行 的,形成的 HMA 应具有较高的 HREE 含量,且同 时具有较高的 Ba 含量和 Ba/Th(>170) 比值 (Woodhead et al., 2001; Elburg et al., 2002).然而 本区石英闪长岩具有亏损HREE的特征,除样品

表 3 治多地区日啊日曲石英闪长岩主量元素(%)、微量及 稀土元素(10⁻⁶)分析结果

Table 3 Major (%) and trace element (10^{-6}) compositions of the Riariqu quartz diorites from Zhiduo area

样号	SC-2	SC-3	SC-4	SC-8	
SO.	62.06	57.06	52.02	57.42	52.50
$T_{1}O_{2}$	02.00	0.51	0.51 1.01 0.4		0.60
	15.02	15.94	16.04	17.00	16.75
$\operatorname{Fac}O_{3}$	6 56	6.91	0.26	6.20	7 12
$re_2 O_3 = M_P O$	0.00	0.01	9.50	0.30	0.14
MaQ	0.15	5.66	5.06	5.06	4 55
MgO C=O	5.51 6.71	0.00	0.00	5.00 7.01	4.00
VaO Na O	0.71	0.04	0.94	2.60	0.07
Na ₂ O	2.94	2.34	2.00	2.09	2.04
R ₂ O	0.92	0.94	1.27	1.15	0.92
1 2 O 5	0.07	1.26	1.59	1.10	1.42
Tetal	0.00	1.00	1.00	1.10	1.40
A /CNK	99.02	0.78	99.90	99.30	0.02
K O/Na O	0.00	0.78	0.78	0.03	0.02
$K_2 O / Na_2 O$	2.86	2.20	0.00	0.42	2.76
M_{α}	5.00	62.00	5.00	61.00	5.70
Ivig	30.00 8.70	8.40	52.00 8 80	7 20	11 20
La	0.70	0.40	0.00	12.60	21.00
D.	20.40	2.07	14.10	15.00	21.90
	2.70	2.07	6.70	1.00 6.10	10.40
ING See	2.19	0.00	0.70	0.10	2 21
5m Eu	0.75	2.10	1.50	0.50	2.31
Eu	0.75	0.62	0.55	0.59	0.74
Gu Th	0.60	0.41	0.20	0.21	0.42
TU Du	2.80	2.66	1.05	2.01	2.42
Dy	0.95	2.00	1.95	2.01	0.59
Fr.	0.00	1.65	1.91	1.20	1.70
Lr T	2.44	1.00	0.10	0.19	0.25
1 m Vh	0.30	1.62	1.22	1.20	1.70
I D	0.25	1.03	1.00	0.20	1.79
DEE	0.50	10.20	0.22	28.05	50.21
KEE Eu/Eu*	01.00	40.33	40.72	30.03	0.06
Eu/Eu	0.71	0.00	26.06	22.01	72.07
Cr	33.40 17.40	22.70	20.66	20.84	21.02
N:	12.24	42.62	15.97	18.60	21.92
Ph	22.00	28.00	13.07	10.09	25.70
KU Su	162 00	157.00	196 50	100.00	107.00
v	24.60	16.60	12 20	12.60	17.20
1	24.00	56.00	21.00	22.00	50.00
Zr Nb	1 26	30.00	31.00 2.10	2 10	3 70
IND Bo	240.00	3.40	202.00	202 00	182.00
ы	249.00	1 69	1.05	1 202.00	102.00
To To	0.20	1.00	1.00	0.42	0.26
1 a DL	0.28	0.20	U.22	0.43	0.20
гD ТЪ	0.80	4.07	0.48 2.00	0.10 E 96	0.17
I I I U	0.40	2.00 0.75	0.55	J.40 1.53	1.90
U	0.40	0.75	0.00	1.00	0.00

注:LOI.烧失量; $Mg^{\#} = 100 \times Mg^{2+} / (Mg^{2+} + 0.9 \times Fe_2O_3^{T})$; A/CNK=Al₂O₃/(CaO+Na₂O+K₂O)摩尔百分比.

SC-2 外, Ba(182×10⁻⁶~202×10⁻⁶)含量和 Ba/Th (38~97)比值均较低(表 3), 所以洋壳脱水促使地

幔熔融模式也不能很好的解释日啊日曲石英闪长岩 的成因.

前文已论述,日啊日曲石英闪长岩与日本 Setouchi 火山岩带中的赞岐岩类有着相似的地球化学 特征(图 4~图 6),这类赞岐质 HMA 通常与俯冲沉 积物部分熔融产生的富 Si 质熔体与上覆地幔橄榄 岩反应有关(Shimoda et al., 1998; Tatsumi, 2001). 日啊日曲石英闪长岩具有较高的 Mg[#](50~62)和 Cr(33.45 imes 10⁻⁶ \sim 176.64 imes 10⁻⁶), Ni(13.34 imes10⁻⁶~43.62×10⁻⁶)含量,显示地幔源区特征.岩体 富集 Rb、Sr、K 等 LILE, 亏损 Nb、Ta、P、Ti 等 HFSE,且具有浅的 Nb-Ta 槽(图 5),表明其岩浆源 区可能主要为岛弧环境下的岩石圈地幔(Pearce and Peate, 1995; Hawkesworth *et al.*, 1997). 日 阿日 曲岩体相对较高的 Th(1.07×10⁻⁶~5.26×10⁻⁶) 含量、较高 Th/La(>0.2) 和 Nb/Y 比值、较高 $({}^{87}Sr/{}^{86}Sr)_i$ 比值和较低的 $\epsilon_{Nd}(t)$ 值(<0),表明源区 可能有俯冲沉积物组分的加入 (Hawkesworth et al., 1997; Plank, 2005). 在 $\varepsilon_{Nd}(t)$ -(⁸⁷ Sr/⁸⁶ Sr); 图 解中(图 6),石英闪长岩样品都落入义敦岛弧昌台 玄武岩和羌塘地块以北可可西里地区 HMA 之间, 与义敦岛弧晚三叠世埃达克质闪长岩类范围重合, 接近赞岐岩类的同位素变化范围,这进一步指示这 类岩石可能与俯冲环境下沉积物熔体和上覆地幔橄 榄岩交代作用有关(Shimoda et al., 1998; Wang et al., 2011a, 2011b, 2013). 日啊日曲石英闪长岩与 日本 Setouchi 火山岩带中的赞岐岩相比具有相对 较高的(87 Sr/ 86 Sr);比值和较低的 $\epsilon_{Nd}(t)$ 值(图 6), 这表明源区可能有更大比例沉积物组分的加入 (Hawkesworth et al., 1997). 此外, Yogodzinski et al.(1995)认为俯冲板片熔融成因的岩石通常具 有较高的 La/Yb(>30)比值,有流体加入会提高 Ba/Th 比值,而日啊日曲石英闪长岩与区域上同时 代的 HMA、埃达克质闪长岩类均具有较低的 La/ Yb、Ba/Th 和较高的 Th/Nb 比值(图 7a 和 7b),表 明其源区可能存在沉积物来源熔体.日啊日曲岩体 具有比 MORB 和地幔更高的 Th/Ce(>0.05)、Th/ Sm 和 Th/Yb(>0.2)比值.Th/Sm 和 Th/Yb 比值 的正相关关系(图 7b)以及 Th/Ce 和143 Nd/144 Nd 比 值的负相关关系(图略)进一步表明沉积物熔体对源 区的贡献(Hawkesworth et al., 1997; Plank, 2005; Zheng et al., 2014).

上述讨论表明,日啊日曲石英闪长岩的岩浆源 区很可能为俯冲沉积物熔融的富 Si 质熔体交代的

图 4 治多地区日啊日曲石英闪长岩(a)TAS 分类图、(b)K₂O-SiO₂ 关系图、(c)A/NK-A/CNK 关系图和(d)MgO-SiO₂ 关 系图

Fig.4 Major-element plots for the Riariqu quartz diorite from Zhiduo area (a) Total alkalis vs.silica (TAS) diagram, (b) K₂O vs.SiO₂ diagram, (c) A/NK vs.A/CNK diagram, (d) MgO vs.SiO₂ diagram

数据来源:日本岛弧 Steouchi火山岩带新生代赞岐岩(Tatsumi and Ishizaka,1982;Shimoda *et al.*,1998;Tatsumi *et al.*,2003);可可西里晚三 叠世高镁安山岩(Wang *et al.*,2011b);义敦岛弧晚三叠世埃达克岩(Wang *et al.*,2011a);a 图据 Wilson,1989;b 图据 Rollinson,1993;c 图据 Maniar and Piccoli,1989;d 图据 McCarron and Smellie,1998

图 5 治多地区日啊日曲石英闪长岩球粒陨石标准化稀土配分曲线(a)和原始地幔标准化微量元素蛛网图(b)

Fig.5 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for the Riariqu quartz diorite from Zhiduo area

图中岩浆岩数据来源同图 4;球粒陨石和原始地幔标准化数据引自 Sun and McDonough, 1989

地幔橄榄岩.金云母和角闪石是两类最普遍的交代 作用产物,熔体在金云母稳定区表现为低 Ba 和 Ba/ Rb(<20)比值,在角闪石稳定区则具低 Rb/Sr (<0.1)和高Ba/Rb(>20)比值(Furman and Gra-

表 4 治多地区日啊日曲石英闪长岩全岩 Sr-Nd 同位素分析结果

Table 4 Sr-Nd isotopic compositions of the Riariqu quartz diorites from Zhiduo area

样号	$^{87}\rm Rb/^{86}Sr$	$^{87} m Sr/^{86} m Sr$	$\pm 2\sigma$	$({}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr})_{\mathrm{i}}$	$^{147}{\rm Sm}/^{144}{\rm Nd}$	$^{143}\rm Nd/^{144}\rm Nd$	$\pm 2\sigma$	$\varepsilon_{\rm Nd}(t)$	$T_{\rm DM2}({ m Ma})$
SC-2	0.580 7	0.709 209	4	0.707 408	0.160 9	0.512 332	2	-5.0	1 398
SC-3	0.702 4	0.710 082	6	0.707 904	0.151 6	0.512 290	2	-5.5	1 444
SC-4	0.740 9	0.709 431	5	0.707 134	0.140 1	0.512 343	3	-4.2	1 334
SC-6	0.680 2	0.708 998	4	0.706 889	0.149 5	0.512 437	14	-2.6	1 206
SC-8	0.5196	0.708 445	6	0.706 834	0.134 9	0.512 469	3	-1.6	1 122

注: $\epsilon_{Nd}(t)$ 值计算采用(¹⁴⁷Sm/¹⁴⁴Nd)_{CHUR}=0.1967; (¹⁴³Nd/¹⁴⁴Nd)_{CHUR}=0.512638; t 代表成岩年龄(218Ma);同位素亏损地幔模式年龄(T_{DM2})计算采用(¹⁴⁷Sm/¹⁴⁴Nd)_{DM}=0.2137; (¹⁴³Nd/¹⁴⁴Nd)_{DM}=0.51315.

图 6 治多地区日啊日曲石英闪长岩 ε_{Nd}(t)-(⁸⁷ Sr/⁸⁶ Sr); Fig.6 Initial ⁸⁷ Sr/⁸⁶ Sr vs. ε_{Nd}(t) values for the Riariqu quartz diorite from Zhiduo area

数据来源:MORB和海相沉积物(Plank and Langmuir,1998);义敦岛 弧晚三叠世昌台玄武岩(Wang *et al.*,2013);其他岩浆岩数据同图 4

ham,1999). 日 啊 日 曲 石 英 闪 长 岩 较 低 的 Ba/Rb (4~7)和较高的 Rb/Sr(0.18~0.26)比值,表明岩浆

源区可能存在少量金云母(图 8a).La/Yb 比值和 Yb 含量的相关关系则进一步指示岩浆可能为尖晶石相 金云母二辉橄榄岩部分熔融的产物(图 8b),其熔融 程度为 $10\% \sim 15\%$.值得注意的是,5 件样品中最基 性样品 SC-4(SiO₂ = 53.02%)却表现出相对较低的 Mg[#](52),但该样品相对高 Fe₂O₃^T(9.36%)和 Ti (1.01%)含量,这可能与样品中 Fe-Ti 氧化物等副矿 物的含量较高有关,局部大量副矿物的出现使样品 SC-4 表现出 Fe-Ti 相对富集而 Mg[#]较低的特征.另一 方面,SiO₂ 含量的变化范围较大(53.02%~62.06%) 及与 MgO、Al₂O₃、TiO₂、Fe₂O₃^T及 CaO 等氧化物的 负相关关系(图略),表明岩浆上升过程中可能经历了 角闪石、辉石等矿物的分离结晶过程.

综上所述,日啊日曲石英闪长岩的成因可以用 两阶段模式来进行解释:首先是俯冲洋壳携带的沉 积物部分熔融产生富 Si 质熔体,这类熔体与地幔橄 榄岩相互作用形成尖晶石相金云母二辉橄榄岩,然 后其低度部分熔融的产物在上升过程中经历了辉 石、角闪石等矿物的分离结晶作用.

Fig.7 Trace-element plots for the Riariqu quartz diorite from Zhiduo area (a) Ba/La vs.La/Yb diagram and (b) Th/Yb vs.Th/Sm diagrams 数据来源:MORB(N-MORB 据 Sun and McDonough, 1989);沱沱河地区晚三叠世富 Nb 玄武岩(Wang et al., 2008);其他岩浆岩数据同图 4 和 6; a 图据 Yogodzinski et al., 1995; b 图据 Zheng et al., 2014

Fig.8 Rb/Sr vs.Ba/Rb (a) and Yb vs.La/Yb (b) diagrams for the Riariqu quartz diorite from Zhiduo area 图 a 据 Furman and Graham(1999);图 b 中带短横线曲线为地幔岩浆熔融程度趋势线,两端元分别为含金云母尖晶石相二辉橄榄岩地幔源区 和含金云母石榴石相二辉橄榄岩地幔源区.图中所有地幔成分参考数据 Miller *et al.*(1999)及其文献;富集地幔源区组分 La=0.648×10⁻⁶, Yb=0.347×10⁻⁶, Dy=0.578×10⁻⁶

Fig.9 Nb vs.Y and Rb vs.Y + Nb discrimination diagrams for the quartz diorite from Zhiduo area 图中岩浆岩数据来源同图 4;syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;ORG.洋中脊花岗岩;底图据 Pearce et al.,1984

4.2 地球动力学背景

差塘地块东北缘及其邻区属东特提斯构造域, 从泥盆纪至三叠纪末,该区经历了古特提斯多岛洋 的扩张、俯冲及闭合过程(莫宣学等,2001; Kapp et al.,2003; Pan et al.,2012),但古特提斯洋在该区 最终闭合过程则是长期争论的问题.金沙江缝合带 和甘孜-理塘缝合带是古特提斯之金沙江洋和甘 孜-理塘洋存在的直接证据,记录了特提斯演化过 程的关键地质信息.南西侧的金沙江洋形成于石炭 纪-早二叠世(Kapp et al.,2000; Pullen et al., 2008), Jian et al.(2009a,2009b)获得该带中蛇绿岩 SHRIMP U-Pb 年龄为 346~341 Ma,代表了洋盆 形成时代.中二叠世南向俯冲消减,在羌塘地块内形 成陆缘火山弧和弧后盆地,以研究区南部的中二叠 世尕笛考组弧火山岩和开心岭群弧后盆地火山岩、 碎屑岩一碳酸盐岩为代表(马丽艳等,2007),早一中 三叠世俯冲过程结束,义敦弧地体拼贴在羌塘地块 东侧(Pullen *et al.*,2008;Zi *et al.*,2012).

北东侧的甘孜一理塘洋做为古特提斯洋的另一 个分支,于晚二叠世从古特提斯洋分离出来并开始 扩张(侯增谦等,2004;Pullen et al.,2008),闫全人 等(2005)获得该带中 N-MORB 型蛇绿岩内辉长岩 SHRIMP U-Pb 年龄为 292 Ma.研究表明,甘孜一理 塘缝合带东段的义敦岛弧从南部中甸弧至北部昌台 地区发育一系列晚三叠世埃达克质侵入岩和基性火 山岩,且均与甘孜一理塘洋西向俯冲有关.如 Wang et al.(2011a,2013)报道的义敦南部香格里拉地区 埃达克质斑岩型侵入体(230~215 Ma)和中酸性火

山岩(220 Ma),是来自俯冲沉积物和板片的熔体与地 幔楔相互反应的产物;义敦北部昌台地区埃达克质玄 武岩(230 Ma)形成于甘孜一理塘西向俯冲环境下地 幔楔的部分熔融; Chen et al. (2013) 报道的义敦南部 中甸地区弧花岗岩类和火山岩(221~211 Ma)也形成 于甘孜一理塘洋西向俯冲过程中,为受俯冲沉积物交 代的地幔楔部分熔融的产物.主量元素和微量元素分 析结果表明,甘孜一理塘北西段晚三叠世(218± 1 Ma)的日啊日曲石英闪长岩类似于 HMA/赞岐岩 类,其产出的构造背景可能为俯冲环境(Pearce et al., 1984;Kapp et al., 2003;Condie, 2005).Nb-Y 构造判别 图解上(图 9a),样品点全部落入火山弧花岗岩区域, Rb-Y+Nb 图解也指示岩石形成于火山-岩浆弧环 境(图 9b).因此,义敦岛弧东侧的整个甘孜一理塘洋 在晚三叠世时期应处于同一构造背景,均为俯冲环 境,南北段差异不明显.

综上所述,晚三叠世时期,甘孜一理塘古特提斯 洋仍在向南西发生俯冲消减,并由北向南依次发育查 涌蛇绿岩、火山一岩浆弧、巴塘陆缘火山弧、结扎弧后 前陆盆地等较完整的沟一弧一盆体系(图10),日啊日 曲石英闪长岩即产于甘孜一理塘洋的南西向俯冲过 程中.义敦地区同碰撞 S 型花岗岩(206~138 Ma;侯 增谦等,2001)和巴颜喀拉周缘前陆盆地的形成则标 志着甘孜一理塘洋盆在三叠纪末期闭合,进入侏罗纪 碰撞造山阶段.随后代表金沙江洋壳成分的多彩蛇绿 混杂岩隆升并遭受剥蚀,日啊日曲石英闪长岩体剥露 至地表并紧邻金沙江缝合带分布(图1b).

5 结论

(1)治多地区日啊日曲石英闪长岩的锆石 LA-

(2)日啊日曲石英闪长岩具有高 MgO、Mg^{*}、 Cr 和 Ni 等高镁闪长岩的特征,地球化学特征与赞 岐岩类相似,形成于俯冲带之上的地幔楔环境,为俯 冲沉积物富 Si 质熔体与地幔橄榄岩反应形成的尖 晶石相金云母二辉橄榄岩低度(10%~15%)部分熔 融的产物,且岩浆在上升过程中经历了辉石、角闪石 等矿物的分离结晶作用.

(3)日啊日曲高镁石英闪长岩具弧岩浆岩地球 化学特征,指示甘孜一理塘古特提斯洋在晚三叠世 时期仍在向南西发生俯冲消减作用.

致谢:感谢中国地质大学(武汉)李艳军老师在 论文撰写过程中给予的指导性意见,同时对三位审 稿人的审阅及建设性修改意见表示诚挚的谢意;成 文过程中得到了石文杰、李欢、田宁和梁胜男博士的 极大帮助;野外工作中青海有色地质矿产勘查院提 供了便利的条件,在此一并表示感谢.

References

- Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report ²⁰⁴ Pb.*Chemical Geology*, 192(1-2):59-79.doi:10.1016/S0009-2541(02)00195-X
- Chen, J. L., Xu, J. F., Ren, J. B., et al., 2013. Geochronology and Geochemical Characteristics of Late Triassic Porphyritic Rocks from the Zhongdian Arc, Eastern Tibet, and Their Tectonic and Metallogenic Implications. *Gondwana Research*, 26 (2): 492 - 504. doi: 10.1016/j. gr.2013.07.022
- Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. *Earth-Science Reviews*, 68 (3-4): 173-196. doi: 10.1016/j. earscirev.2004.05.001
- Condie, K. C., 2005. High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes? *Lithos*, 79(3-4): 491-504. doi: 10. 1016/j.lithos.2004.09.014
- Crawford, A.J., Falloon, T.J., Green, D.H., et al., 1989. Classification Petrogenesis and Tectonic Setting of Boninites. Academic Division of Unwin Hyaman Ltd., London.
- Deng, J. F., Liu, C., Feng, Y. F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks (HMA) and Magnesian Andesitic/Dioritic Rocks (MA): Two Igneous Rock Types Related to Oceanic Subduction. *Geology in China*, 37 (4): 1112-1118 (in Chinese with English abstract).

- Elburg, M. A., van Bergen, M., Hoogewerff, J., et al., 2002.
 Geochemical Trends across an Arc-Continent Collision
 Zone: Magma Sources and Slab-Wedge Transfer Processes
 ses below the Pantar Strait Volcanoes, Indonesia.
 Geochimica et Cosmochimica Acta, 66 (15): 2771 –
 2789.doi:10.1016/S0016-7037(02)00868-2
- Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. *Lithos*, 48(1-4): 237-262.doi:10.1016/S0419-0254(99)80014-7
- Fu, X.G., Wang, J., Tan, F.W., et al., 2010. The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17 (1): 135 - 144. doi: 10. 1016/j.gr.2009.04.010
- Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. *Nature*, 432:892-897.doi:10.1038/nature03162
- Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4):231-282.doi: 10.1016/j.precamres.2003.12.011
- Hawkesworth, C.J., Turner, S.P., Mcdermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. *Science*, 276 (5312):551-555.doi:10.1126/science.276.5312.551
- Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. *Re*views in Mineralogy and Geochemistry, 53(1):27-62. doi:10.2113/0530027
- Hou, Z. Q., Qu, X. M., Zhou, J. R., et al., 2001. Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region: Record of Granites. Acta Geologica Sinica, 75 (4):484-497 (in Chinese with English abstract).
- Hou,Z.Q., Yang, Y.Q., Qu, X.M., et al., 2004. Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1):109-120 (in Chinese with English abstract).
- Jian, P., Liu, D.Y., Kröner, A., et al., 2009a. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (I): Geochemistry of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks. *Lithos*, 113 (3 - 4): 748 - 766. doi: 10.1016/j. lithos.2009.04.004
- Jian, P., Liu, D.Y., Kröner, A., et al., 2009b. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (II): Insights from Zircon Ages of

Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. *Lithos*, 113 (3 - 4): 767 - 784. doi: 10. 1016/j.lithos.2009.04.006

- Kamei, A., Owada, M., Nagao, T., et al., 2004. High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc: Evidence from Clinopyroxene and Whole Rock Compositions. *Lithos*, 75 (3 – 4):359-371.doi:10.1016/j.lithos.2004.03.006
- Kapp, P., Yin, A., Manning, C. E., et al., 2000. Blueschist-Bearing Metamorphic Core Complexes in the Qiangtang Block Reveal Deep Crustal Structure of Northern Tibet. *Geology*, 28:19-22.doi:10.1130/0091-7613(2000)28 <19:BMCCIT>2.0.CO;2
- Kapp, P., Yin, A., Manning, C. E., et al., 2003. Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet. *Tectonics*, 22(4): 1043.doi:10.1029/2002TC001361
- Kelemen, P.B., 1995. Genesis of High Mg[#] Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1):1-19.doi:10.1007/BF00311004
- Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. *Treatise on Geochemistry*, 3: 593-659. doi:10.1016/B0-08-043751-6/03035-8
- Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. *Journal of Petrology*, 51(1-2):537-571. doi:10.1093/petrology/egp082
- Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. *Chemical Geology*, 257(1-2):34-43. doi: 10.1016/j. chemgeo.2008.08.004
- Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. *Chemical Geology*, 247 (1-2): 133-153.doi:10.1016/j.chemgeo.2008.08.004
- Ludwig, K.R., 2003. User's Manual for Isoplot 3.0—A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
- Luo, W.X., Qian, L.L., Li, D.W., et al., 2013. Petrogenesis of the Zhongzaohuo Ultramafic Pyroxenite Pluton, East

Kunlun: Constraints from Petrology, Geochemistry and Genetic Mineralogy. Earth Science—Journal of China University of Geosciences, 38(6):1214-1228 (in Chinese with English abstract).

- Ma, L.Y., Niu, Z.J., Bai, Y.S., et al., 2007. Sr, Nd and Pb Isotopic Geochemistry of Permian Volcanic Rocks from Southern Qinghai and Their Geological Significance. *Earth Science*—Journal of China University of Geosciences, 32(1):22–28 (in Chinese with English abstract).
- Maniar, P.D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. doi:10.1130/0016-7606(1989)101 <0635: TDOG>2.3.CO;2
- Mao, J. W., Pirajno, F., Zhang, Z. H., et al., 2006. Late Variscan Post-Collisional Cu-Ni Sulfide Deposits in East Tianshan and Altay in China: Principal Characteristics and Possible Relationship with Mantle Plume. Acta Geologica Sinica, 80(7):925-942 (in Chinese with English abstract).
- McCarron, J. J., Smellie, J. L., 1998. Tectonic Implications of Fore-Arc Magmatism and Generation of High-Magnesian Andesites: Alexander Island, Antarctica. *Journal of the Geological Society*, 155(2):269-280. doi:10.1144/gsjgs.155.2.0269
- Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9):1399-1424.doi: 10.1093/petrology/40.9.1399
- Mo,X.X., Deng, J.F., Dong, F.L., et al., 2001. Volcanic Petrotectonic Assemblages in Sanjiang Orogenic Belt, SW China and Implications for Tectonics. *Geological Journal of China Universities*, 7(2):121-138 (in Chinese with English abstract).
- Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. doi:10.1016/j.jseaes.2011.12.018
- Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. *Journal of Petrology*, 25 (4):956-983.doi:10.1093/petrology/25.4.956
- Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23:251-286.doi:10. 1146/annurev.ea.23.050195.001343
- Peng, T.P., Zhao, G.C., Fan, W. M., et al., 2014. Zircon Geochronology and Hf Isotopes of Mesozoic Intrusive

Rocks from the Yidun Terrane, Eastern Tibetan Plateau:Petrogenesis and Their Bearings with Cu Mineralization. Journal of Asian Earth Sciences, 80:18-33. doi:10.1016/j.jseaes.2013.10.028

- Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. *Journal of Petrology*, 46(5): 921-944.doi:10.1093/petrology/egi005
- Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. *Chemical Geology*, 145(3-4):325-394.doi:10.1016/S0009-2541(97)00150-2
- Polat, A., Kerrich, R., 2001. Magnesian Andesites, Nb-Enriched Basalt-Andesites, and Adakites from Late-Archean 2.7 Ga Wawa Greenstone Belts, Superior Province, Canada; Implications for Late Archean Subduction Zone Petrogenetic Processes. *Contributions to Mineralo*gy and Petrology, 141 (1): 36 - 52. doi: 10.1007/ s004100000223
- Pullen, A., Kapp, P., Gehrels, G.E., et al., 2008. Triassic Continental Subduction in Central Tibet and Mediterranean-Style Closure of the Paleo-Tethys Ocean. *Geology*, 36 (5):351-354.doi:10.1130/G24435A.1
- Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. *Chemical Geology*, 160(4): 335 - 356. doi: 10.1016/S0009 -2541(99)00106 - 0
- Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group UK Ltd., New York.
- Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998. Setouchi High-Mg Andesites Revisited: Geochemical Evidence for Melting of Subducting Sediments. *Earth and Planetary Science Letters*, 160 (3 - 4): 479 - 492. doi: 10. 1016/S0012-821X(98)00105-8
- Shirey, S. B., Hanson, G. N., 1984. Mantle-Derived Archaean Monozodiorites and Trachyandesites. Nature, 310: 222-224.doi:10.1038/310222a0
- Smithies, R. H., Champion, D. C., 1999. Late Archaean Felsic Alkaline Igneous Rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: A Result of Lower Crustal Delamination? Journal of the Geological Society, 156(3):561-576.doi:10.1144/gsjgs.156.3.0561
- Smithies, R. H., Champion, D. C., 2000. The Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. Journal of Petrology, 41(12):

1653-1671.doi:10.1093/petrology/41.12.1653

- Smithies, R. H., van Kranendonk, M. J., Champion, D. C., 2007. The Mesoarchean Emergence of Modern-Style Subduction. Gondwana Research, 11 (1 - 2): 50 - 68. doi:10.1016/j.gr.2006.02.001
- Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalt: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M.J., eds., Magmatism in the Ocean Basins. *Geological* Society Special Publications, London, 42:313-345.
- Tatsumi, Y., 1995. Subduction Zone Magmatism. Blackwell Publishing House, Boston.
- Tatsumi, Y., 2001. Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction: Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan. Geology, 29 (4):323-326. doi:10.1130/0091-7613(2001)029< 0323:GMOPMO>2.0.CO;2
- Tatsumi, Y., Hanyu, T., 2003. Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere: Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan. Geochemistry, Geophysics, Geosystems, 4(9):1081.doi:10.1029/2003GC000530
- Tatsumi, Y., Ishizaka, K., 1981. Existence of Andesitic Primary Magma: An Example from Southwest Japan. Earth and Planetary Science Letters, 53(1):124-130. doi:10.1016/0012-821X(81)90033-9
- Tatsumi, Y., Ishizaka, K., 1982. Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, I. Petrographical and Chemical Characteristics. *Earth and Planetary Science Letters*, 60(2):293-304. doi:10.1016/0012-821X(82)90008-5
- Tatsumi, Y., Shukuno, H., Sato, K., et al., 2003. The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt, SW Japan. Journal of Petrology, 44(9): 1561-1578. doi: 10.1093/petrology/egg049
- Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. *Lithos*, 175 – 176:285-301.doi:10.1016/j.lithos.2013.05.013
- Wang, B.Q., Zhou, M.F., Li, J.W., et al., 2011a. Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. *Lithos*, 127(1-2):24-38. doi: 10.1016/j.lithos.2011.07.028

- Wang, Q., Li, Z. X., Chung, S. L., et al., 2011b. Late Triassic High-Mg Andesite/Dacite Suites from Northern Hohxil, North Tibet: Geochronology, Geochemical Characteristics, Petrogenetic Processes and Tectonic Implications. *Lithos*, 126(1-2):54-67.doi:10.1016/j.lithos.2011.06.002
- Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4):473-490.doi:10.1007/s00410-007-0253-1
- Wang, Q., Zhao, Z. H., Xu, J. F., et al., 2006. Carboniferous Adakite- High-Mg Andesite-Nb-Enriched Basaltic Rocks Suites in the Northern Tianshan Area: Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt and Cu-Au Mineralization. Acta Petrologica Sinica, 22 (1):11-30 (in Chinese with English abstract).
- Wilson, M., 1989. Igneous Petrogenesis. Unwim Hyman, London.
- Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192 (3): 331 – 346. doi: 10. 1016/S0012-821X(01)00453-8
- Xu,Z.Q., Yang,J.S., Li, W.C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29 (6): 1847 - 1860 (in Chinese with English abstract).
- Yan, Q. R., Wang, Z. Q., Liu, S. W., et al., 2005. The Tethys Expansion and the Gondwana Cleavage in West-Northern Sanjiang: The SHRIMP Chronological Evidence from Ganzi Ophiolite Gabbro. *Chinese Science Bulletin*, 50(2):158-166 (in Chinese).
- Yi, L. W., Ma, C. Q., Wang, L. X., et al., 2014. Discovery of Late Ordovician Subvolcanic Rocks in South China: Existence of Subduction-Related Dacite from Early Paleozoic? Earth Science—Journal of China University of Geosciences, 39(6): 637-653 (in Chinese with English abstract).
- Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review Earth and Planetary Science Letters, 28:211-280. doi: 10.1146/ annurev.earth.28.1.211
- Yin, J. Y., Yuan, C., Sun, M., et al., 2012. Age, Geochemical Features and Possible Petrogenesis Mechanism of Early Permian Diorite in Hatu, Xinjiang. Acta Petrologica Sinica, 28(7):2171-2182 (in Chinese with English abstract).
- Yogodzinski, G.M., Key, R.W., Volynets, O.N., et al., 1995.

Magnesian Andesite in the Western Aleutian Komandorsky Region: Implications for Slab Melting and Processes in the Mantle Wedge. *Geological Society of America Bulletin*, 107(5):505-519. doi:10.1130/001 6-7606(1995)107<0505:MAITWA>2.3.CO:2

- Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994.Magnesian Andesites and the Subduction Component in a Strongly Calcalkaline Series at Piip Volcano, Far Western Aleutians. *Journal of Petrology*, 35(1): 163-204.doi:10.1093/petrology/35.1.163
- Zhai, Q.G., Jahn, B.M., Su, L., et al., 2013. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet: Zircon U-Pb Ages, Geochemical and Sr-Nd-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63(1):162-178. doi: 10.1016/j.jseaes. 2012.08.025
- Zhai, Q. G., Jahn, B. M., Zhang, R. Y., et al., 2011. Triassic Subduction of the Paleo-Tethys in Northern Tibet, China: Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6):1356-1370.doi:10.1016/j.jseaes.2011.07.023
- Zhang, Q., Qian, Q., Zhai, M.G., et al., 2005. Geochemistry, Petrogenesis and Geodynamic Implications of Sanukite. Acta Petrologica et Mineralogica, 24(2):117-125 (in Chinese with English abstract).
- Zhang, Q., Wang, Y., Qian, Q., et al., 2004. Sanukite of Late Archaean and Early Earth Evolution. Acta Petrologica Sinica, 20(6):1355-1362 (in Chinese with English abstract).
- Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25 (1): 170-189. doi:10.1016/j.gr.2012.08.024
- Zhao, Z. H., Wang, Q., Xiong, X. L., et al., 2007. Magnesian Igneous Rocks in Northern Xinjiang. Acta Petrologica Sinica, 23(7):1696-1707 (in Chinese with English abstract).
- Zheng, Y.C., Hou, Z.Q., Gong, Y.L., et al., 2014. Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Tibet: Implications for Mid-Ocean Ridge Subduction and Crustal Growth. *Lithos*, 190-191:240-263.doi:10.1016/j.lithos.2013.12.013
- Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23 (4): 1429 – 1454. doi: 10.1016/j.gr. 2012.02.002
- Zi, J.W., Cawood, P.A., Fan, W.M., et al., 2012. Contrasting

Rift and Subduction-Related Plagiogranites in the Jinshajiang Ophiolitic Melange, Southwest China, and Implications for the Paleo-Tethys. *Tectonics*, 31: 1 - 18. doi:10.1029/2011TC002937

附中文参考文献

- 邓晋福,刘翠,冯艳芳,等,2010.高镁安山岩/闪长岩类 (HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相 关的两类典型的火成岩类.中国地质,37(4): 1112-1118.
- 侯增谦,曲晓明,周继荣,等,2001.三江地区义敦岛弧碰撞造 山过程:花岗岩记录.地质学报,75(4):484-497.
- 侯增谦,杨岳清,曲晓明,等,2004.三江地区义敦岛弧造山带 演化和成矿系统.地质学报,78(1):109-120.
- 罗文行,钱莉莉,李德威,等,2013.东昆仑中灶火地区超镁铁 质辉石岩的成因.地球科学——中国地质大学学报,38 (6):1214-1228.
- 马丽艳,牛志军,白云山,等,2007.青海南部二叠纪火山岩 Sr、Nd、Pb同位素特征及地质意义.地球科学——中国 地质大学学报,32(1):22-28.
- 毛景文,Pirajno,F.,张作衡,等,2006.天山一阿尔泰东部地 区海西晚期后碰撞铜镍硫化物矿床:主要特点及可能 与地幔柱的关系.地质学报,80(7):925-942.
- 莫宣学,邓晋福,董方浏,等,2001.西南三江造山带火山岩-构造组合及其意义.高校地质学报,7(2):121-138.
- 王强,赵振华,许继峰,等,2006.天山北部石炭纪埃达克岩一高镁安山岩一富 Nb 岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义.岩石学报,22(1):11-30.
- 许志琴,杨经绥,李文昌,等,2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报,29(6):1847-1860.
- 闫全人,王宗起,刘树文,等,2005.西南三江特提斯洋扩张与 晚古生代东冈瓦纳裂解:来自甘孜蛇绿岩辉长岩的 SHRIMP年代学证据.科学通报,50(2):158-166.
- 易立文,马昌前,王连训,等,2014.华南晚奥陶世次火山岩的 发现:早古生代与俯冲有关的英安岩?地球科学—— 中国地质大学学报,39(6):637-653.
- 尹继元,袁超,孙敏,等,2012.新疆哈图早二叠世富镁闪长岩 的时代、地球化学特征和可能的成因机制.岩石学报, 28(7):2171-2182.
- 张旗,钱青,翟明国,等,2005.Sanukite(赞岐岩)的地球化学 特征、成因及其地球动力学意义.岩石矿物学杂志,24 (2):117-125.
- 张旗, 王焰, 钱青, 等, 2004. 晚太古代 Sanukite(赞岐岩) 与地 球早期演化. 岩石学报, 20(6):1355-1362.
- 赵振华,王强,熊小林,等,2007.新疆北部的富镁火成岩.岩石 学报,23(7):1696-1707.